MISSOURI GEOLoGICAL SURVEY

VOLUME V.

PALEONTOLOGY OF MISSOURI

(PART II)

BY

CHARLES ROLLIN KEYES, A. M., Ph. D.,

STATE GEOLOGIST.

JEFFERSON CITY:
TRIBUNE PRINTING COMPANY, Printers and Binders.
1894.
BOARD OF MANAGERS.

His Excellency, Wm. J. Stone, Governor of Missouri, Jefferson City,
Ex officio President of the Board.

Dr. J. H. Britts.. Clinton
Hon W. O. L. Jewett.. Shelbina
Prof. E. M. Shepard, Drury College........................ Springfield
Prof. W. H. Seamon, School of Mines.................... Rolla
GEOLOGICAL CORPS.

CHARLES R. KEYES, State Geologist.

E. H. LONSDALE, Ass’t Geologist, Building Materials.

C. F. MARBUT, Ass’t Geologist, Topography.

H. A. WHEELER, Ass’t Geologist, Clays.

ERASMUS HAWORTH, Ass’t Geologist, Crystalline Rocks.

E. L. CARTER, Secretary.
LETTER OF TRANSMITTAL.

Missouri Geological Survey.
Jefferson City, June 1, 1894.

To the President, Governor Wm. J. Stone, and the members of the
Board of Managers of the Bureau of Geology and Mines:

Gentlemen—I have the honor to transmit herewith the
second part of my Report on the Paleontology of Missouri.

With great respect,

Charles R. Keyes,
State Geologist.
CONTENTS

Part I.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td>5</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>7</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>9</td>
</tr>
<tr>
<td>Preface</td>
<td>11</td>
</tr>
<tr>
<td>Chapter I. Introduction</td>
<td>20</td>
</tr>
<tr>
<td>Chapter II. Sketch of Missouri Stratigraphy</td>
<td>29</td>
</tr>
<tr>
<td>Chapter III. Biological Relations of Fossils</td>
<td>88</td>
</tr>
<tr>
<td>Chapter IV. Protozoans and Sponges</td>
<td>102</td>
</tr>
<tr>
<td>Chapter V. Hydrozooids and Corals</td>
<td>104</td>
</tr>
<tr>
<td>Chapter VI. Echinoderms: Echinoids and Asterids</td>
<td>125</td>
</tr>
<tr>
<td>Chapter VII. Echinoderms: Cystids and Blastoids</td>
<td>132</td>
</tr>
<tr>
<td>Chapter VIII. Echinoderms: Crinoids</td>
<td>143</td>
</tr>
<tr>
<td>Chapter IX. Worms and Crustaceans</td>
<td>226</td>
</tr>
<tr>
<td>Appendix—Stratigraphic Catalogue of Missouri Fossils</td>
<td>241</td>
</tr>
</tbody>
</table>

Part II.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td>5</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>7</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>9</td>
</tr>
<tr>
<td>Preface</td>
<td>11</td>
</tr>
<tr>
<td>Chapter X. Polyzoans</td>
<td>13</td>
</tr>
<tr>
<td>Chapter XI. Brachiopods</td>
<td>38</td>
</tr>
<tr>
<td>Chapter XII. Lamellibranchs</td>
<td>108</td>
</tr>
<tr>
<td>Chapter XIII. Gasteropods</td>
<td>133</td>
</tr>
<tr>
<td>Chapter XIV. Cephalopods</td>
<td>220</td>
</tr>
<tr>
<td>Chapter XV. Vertebrates</td>
<td>229</td>
</tr>
<tr>
<td>Appendix—Synonymic Index to the Fossils of Missouri</td>
<td>241</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS.

PART I.

PLATE I. Gorge of the Missouri at Jefferson City.
ii. Saccharoidal Sandstone at Pacific.
iii. Unconformity of Lower Carboniferous and Ozark Limestones.
iv. Mississippian Section.
v. Louisiana Limestone at Louisiana.
vi. Lover's Leap, Hannibal (Lower Carboniferous).
vii. Louisiana Topography.
viii. Saint Louis Limestone.
ix. Juncture of Coal Measures and Saint Louis Limestone.
x. Carboniferous Rocks at Kansas City.
xii. Development of Actinocrinus.
xii. Protozoans, Sponges and Corals.

PART II.

xxxiii. Polyzoans.
xxxiv. Polyzoans.
xxxv. Brachiopods.
xxxvi. Brachiopods.
xxxvii. Brachiopods.
xxxviii. Brachiopods.
xxxix. Brachiopods.
xx. Brachiopods.
xxi. Brachiopods.
xxii. Lamellibranchs.
xxiii. Lamellibranchs.

G—2
ILLUSTRATIONS.

Plate xliv. Lamellibranchs.
xlv. Lamellibranchs.
xli. Lamellibranchs.
xliv. Lamellibranchs.
xlvii. Lamellibranchs.
xlviii. Gasteropods.
xlix. Gasteropods.
1. Gasteropods.
ll. Gasteropods.
lii. Gasteropods.
liii. Gasteropods.
liii. Cephalopods.
liiv. Cephalopods.

FIGURES IN PART I.

Figure 1. Section at Railroad Bridge north of Fredericktown, Madison county, showing contact of Cambrian and Archean.
2. Ideal section of the Deposition of the Ozark Rocks.
3. Relation of Saint Louis and "Warsaw" beds at Keokuk, Iowa.
5. Relation of the Aux Vases Sandstone.
6. Rocks at Chester (Illinois) showing Coal Measure sandstone resting on Kas-kaska limestone and shales.
7. Line of juncture at figure 6.
8. Lower Coal Measures resting on Brecciated Saint Louis limestone at Keokuk, Iowa.

PART II.

10. Variation of Capulus equilateralis (from above).
11. Variation of Capulus equilateralis (from side).
PREFACE.

The Paleontology of Missouri is contained in two volumes. Part I, which forms volume IV of the subject reports of the Missouri Geological Survey, and contains chapters I to IX and plates I to XXXII, has already been published. In addition to the consideration of the fossils, there is included an introductory chapter on the stratigraphy of the State, accompanied by a geological map compiled from the work of former surveys and data obtained by the present organization.

The second part of the Paleontology of Missouri is contained in the following pages. It embraces chapters X to XV and plates XXXIII to LIV of the entire work. In it are considered the Polyzoans, Brachiopods, Lamellibranchs, Gasteropods, Cephalopods and Vertebrates.
CHAPTER X.

POLYZOANS.

Phacelopora pertenuis Ulrich.

Plate xxxiii, fig. 3.

Horizon and localities — Lower Silurian, Trenton limestone: Thebes (Illinois); apparently the same form occurs in Missouri below Cape Girardeau.

Homotrypa arbuscula Ulrich.

Homotrypa arbuscula Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 409, pl. xxxviii, figs. 3-3c.

Horizon and localities — Lower Silurian, Trenton limestone: Calhoun county (Illinois).

Leioclema gracillimum Ulrich.

Horizon and localities — Lower Carboniferous, Burlington limestone: Hannibal; Keokuk limestone: Clark county; Keokuk (Iowa); Warsaw (Illinois).

Leioclema punctatum (Hall).

Zoarium large, dichotomizing; branches three or four millimeters in diameter, and arising from broad basal expansions
or attached to foreign objects; surface even, often slightly spinous. Zooidal walls thick; openings elliptical, surrounded by numerous small mesopores. Acanthopores rather large.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: LaGrange, Wayland and other places in northeastern Missouri; and in the same beds of the contiguous portions of the adjoining states.

Leioclema foliatum Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk beds: Warsaw (Illinois).

Leioclema araneum Ulrich.

Horizon and localities.—Lower Carboniferous, Chester shales: Ste. Genevieve; Chester (Illinois).

Batostomella nitidula Ulrich.

Horizon and localities.—Lower Carboniferous, Chester shales: Chester (Illinois); apparently the same form as occurs in Ste. Genevieve county, Missouri.

Stenopora americana Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Stenopora montifera Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Clark county; Bentonsport (Iowa).
Stenopora emanciata Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Stenopora intercalaris Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Stenopora angularis Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: LaGrange.

Stenopora intermittens Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Stenopora tuberculata (Prout).

Zoarium variable in size and shape, forming thin expansions on shells of brachiopods and the hard parts of other organisms; often free, with a well-defined and wrinkled epitheca on the under side. Surface nearly smooth. Zoöcal openings sub-circular or rounded polygonal; tubes prostrate at first, but rapidly curving outward; walls thin. Mesopores not abundant; diaphragms numerous. Acanthopores of medium size.
Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Barrett station (Saint Louis county); Kaskaskia limestone: Chester (Illinois).

Stenopora cestriensis Ulrich.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Stenopora meekana Ulrich.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Anisotrypa solida Ulrich.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Genevieve county; Chester (Illinois).

Fistulipora compressa Rominger.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: LaGrange, Wayland (Clark county).

Fistulipora carbonaria Ulrich.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Meekopora approximata Ulrich.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).
POLYZOANS.

Meekopora clausa (ULRICH).

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Strotopora foveolata ULRICH.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: St. Francisville; Bentonport (Iowa); Warsaw (Illinois).

Strotopora dermata ULRICH.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Cystodictya nitida ULRICH.

Cystodictya nitida Ulrich, 1890: *Geol. Sur. Illinois*, vol. VIII, p. 493, pl. lxxvi, figs. 4-4c.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: St. Francisville (probably); Bentonport (Iowa).

Cystodictya americana ULRICH.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Bentonport (Iowa), and elsewhere on the lower Des Moines river.

Cystodictya pustulosa ULRICH.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).
Coscinium? latum Ulrich.

Zoarium large, forming a broad, flattened, reticulated frond, with a large expanded basal portion attached to foreign objects. Zoöcical openings somewhat reniform, regularly arranged in rows.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal (?); Burlington (Iowa); Quiney (Illinois).

Dichotrypa intermedia Ulrich.

Zoarium forming broad, fan-shaped fronds, with attenuated margins; surface smooth, zoöcical apertures circular, and arranged in more or less distinct rows.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: St. Louis.

Actinotrypa peculiaris (Rominger).

Actinotrypa peculiaris Ulrich, 1890: *Geol. Sur. Illinois*, vol. VIII, p. 503, pl. lxxvii, figs. 3-3b.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: LaGrange; Keokuk (Iowa).

Prismopora trifolia (Rominger).

Prismopora trifolia Ulrich, 1890: *Geol. Sur. Illinois*, vol. VIII, p. 505, pl. lxxvii, figs. 4-4a.

Horizon and localities—Lower Carboniferous, Keokuk limestone: LaGrange; Keokuk (Iowa).

Evactinopora sexradiata Meek & Worthen.

POLYZOANS.

Zoarium small, delicate, depressed, composed of six flattened expansions, radially placed. Zooidal apertures sub-circular, closely arranged.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Louisiana; Burlington (Iowa).

Evactinopora grandis **Meek & Worthen.**

Evactinopora radiata **Meek & Worthen.**

Zoarium ellipsoidal in outline when complete, consisting of from six to eight bilaminar vertical folia, arranged in a radiate manner. In the basal half of the zoarium the folia or rays are united and much thickened by a deposit of calcareous material, so that the "body" or the star as seen in the basal view is comparatively strong, and the rays are preserved in the regular rounded base as angular covering ridges, separated by at first very shallow then gradually deepening and widening furrows. At a point about midway between the summit and base where the rays become free, they are actually elliptical in transverse section, four or five mm. in width, with a non-poriferous border on each edge—the outer one a little the widest: from this point the margins are parallel for a short distance, then converge slowly, till they meet at the narrowly rounded
extremity. The whole base for nearly one-third the distance up the side of the rays is non-poriferous at the surface, the zoecia apertures here being covered by a granulo-striate deposit of schlerenchyma decreasing in thickness upward. Zoecia prostrate at first, then arising from the mesial lamina proceed to each surface of the rays at an angle of about 45°. Apertures subcircular, oblique, the lower margin being most elevated; about 0.22 mm. Interspaces occupied by small lenticular vesicles, a few of which remain open, especially on each side of the mesial plane, the rest being filled and obscured by vertically perforated dense tissue, the perforations appearing in tangential sections as exceedingly numerous minute dark spots. Scattered among them are other spots of large size, that resemble acanthopores, in having the central portion lucid. Lunarium inconspicuous. (Ulrich.)

Horizon and localities—Lower Carboniferous, Keokuk limestone: Exact place not known.

Glyptopora plumosa (Prout).

Plate xxxii, fig. 5.

Zoarium consisting of one or more bilaminar thin expansions, arising from a common attached base, each having both surfaces traversed by strong bifurcating and coalescing ridges, so as to enclose large but rather shallow concave spaces or cups, varying, so far as observed, in length from 20 to 30 mm., and in width from 12 to 32 mm. The surface of the cups slopes gradually up to the base of the sharp edge ridges. At the bottom there is usually a long and narrow depressed macula or "dimple," and on each side, arranged in a more or less distinctly pinnate manner, are a series of long curving, sharply depressed parallel dimples, about 1.2 mm. wide, and from 7 to 16 mm. long.
The ridges on one side of the expansion correspond to the central depression on the other. Zoecia apertures very slightly oblique, subcircular or oval, 0.15 to 0.20 mm. in diameter, arranged in from four to eight (usually five) alternating rows between the dimples, about nine in 3 mm. Peristome moderate, somewhat more elevated on one side than on the other. Interspaces depressed when perfect, usually about half as wide as the apertures. In thin sections the zoecial tubes have moderately thick ring-like walls, a portion of the wall being distinguishable from the rest as the lunarium by its lighter color. A large number of small vesicles occupy the interspaces between the zoecia walls. (Ulrich.)

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Barrett station (Saint Louis county).

Glyptopora sagenella (Prout).

Horizon and localities—Lower Carboniferous, Keokuk limestone: Bentonsport (Iowa); Warsaw (Illinois).

Glyptopora megastoma Ulrich.

Horizon and localities—Lower Carboniferous, Keokuk limestone: Keokuk and Bentonsport (Iowa).

Glyptopora elegans (Prout).

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).
Glyptopora keyserlingi (PROUT).

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Glyptopora michelinia (PROUT).

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Barrett station (Saint Louis county).

Tæniodictya ramulosa Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Tæniodictya frondosa Ulrich.

Tæniodictya frondosa Ulrich, 1890: *Geol. Sur. Illinois*, vol. VIII, p. 529, pl. lxxix, figs. 5-5c.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Stictoporella basalis Ulrich.

Stictoporella basalis Ulrich, 1890: *Geol. Sur. Illinois*, vol. VIII, p. 532, pl. lxxv, figs. 5-5b.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Fenestella filistriata Ulrich.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Montezuma (Illinois).
Fenestella rudis Ulrich.
Plate xxxiv, fig. 5.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: St. Francisville.

Fenestella limitaris Ulrich.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Fenestella multispinosa Ulrich.

Fenestella multispinosa Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 540, pl. 1, figs. 3-3e.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Fenestella funicula Ulrich.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Fenestella serratula Ulrich.

Fenestella serratula Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 544, pl. 1, figs. 5-5e.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Fenestella cingulata Ulrich.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Fenestella banyana Prout.

Horizon and localities. — Lower Carboniferous, Saint Louis limestone: Barrett station (St. Louis county).
POLYZOANS.

Fenestella tenax Ulrich.

Horizon and localities—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Fenestella cestriensis Ulrich.

Horizon and localities—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Fenestella flexuosa Ulrich.

Horizon and localities—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Fenestella shumardi Prout.

Plate xxxiv, figs. 2a-b.

Polyzoans growing apparently in flabelliform expansions and composing an extremely fine delicate network; branches very slender, of uniform size, rather flattened and comparatively coarsely striated on the non-poriferous side, bifurcating at rather regular intervals of from 0.20 to 0.25 inch, the divisions diverging but slightly; fenestrules oblong or about once and a half to nearly twice as long as wide, distinctly quadrangular, especially as seen on the non-poriferous side, and about equaling the breadth of the branches; dissepiments extremely slender or scarcely more than one-fourth as thick as the branches, not widened at the end on the non-poriferous side, but often somewhat expanded by a pore at one or both ends on the other side. Poriferous side with a mesial carina apparently sometimes bearing minute projecting points, and on each side of this angle about two and sometimes three compara-
tively large pores, generally arranged so that there is one at each end of each dissepiment, and another between these opposite each side of each fenestrule. (Meek.)

*Horizon and localities.—*Upper Carboniferous, Upper Coal Measures: Kansas City.

Fenestella elevatipora Ulrich.

*Horizon and localities.—*Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Hemitrypa hemitrypa (Prout).

*Horizon and localities.—*Lower Carboniferous, Saint Louis limestone: Barrett station (St. Louis county).

Hemitrypa aspera Ulrich.

*Horizon and localities.—*Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Hemitrypa nodosa Ulrich.

*Horizon and localities.—*Lower Carboniferous, Keokuk limestone: Benton sport (Iowa).

Hemitrypa perstriata Ulrich.

*Horizon and localities.—*Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).
Hemitrypa pateriformis Ulrich.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Archimedes owenanus Hall.

Plate xxxiii, fig. 2.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Archimedes wortheni Hall.

Plate xxxiii, fig. 1.

Archimedes wortheni Hall, 1858: Geol. Iowa, vol. I, p. 651, pl. xxii, figs. 3, 4a-b, 5a-b.

Archimedes reversa Hall, 1858: Geology Iowa, vol. I, p. 652, pl. xxii, fig. 2.

Zoarium* large, flabellate, twisted; often attaining a measurement of 20 to 25 centimeters. Axis robust, elongate, fusiform; volutions quite regular; shaft short, abruptly and broadly expanding. Fenestrated portion very broad, with closely set, rigid branches, and consequently very narrow fenestrules. Zoecial openings small, somewhat elevated.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Wayland, LaGrange.

Archimedes swallovanus Hall.

Horizon and localities. — Lower Carboniferous, Kaskaskia limestone: Ste. Genevieve.
Archimedes laxus Hall.

Horizon and localities.—Lower Carboniferous, Chester limestone: Chester (Illinois).

Lyropora retrosa Meek & Worthen.

Plate xxxiv, fig. 4.

Solid marginal support only known, the expanded, reticulate portion being always entirely removed. The two divisions of the lateral support diverge at an angle of ninety degrees, and are comparatively straight and slender. As in other species of this group, they have their inner edges oblique and not parallel to the plane of the fossil, while the minute, attenuated base of attachment is deflected toward the same side as the inner edge of the lateral marginal supports.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Louisiana.

Lyropora subquadrans Hall.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Lyropora quincuncialis Hall.

Lyropora quincuncialis Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 583, pl. lviii, figs. 3-3d.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).
Lyropora divergens Ulrich.

Horizon and localities: Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Polypora halliana Prout.

Horizon and localities: Lower Carboniferous, Keokuk limestone: Clark county.

Polypora maccoyana Ulrich.

Polypora maccoyana Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 588, pl. lix, figs. 3-3d.

Horizon and localities: Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Polypora simulatrix Ulrich.

Horizon and localities: Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Polypora gracilis Prout.

Horizon and localities: Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).
Polypora retrorsa Ulrich.

Polypora retrorsa Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 591, pl. lx, figs. 6-9d.

Horizon and localities—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Polypora radialis Ulrich.

Horizon and localities—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Polypora spininodata Ulrich.

Horizon and localities—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Polypora biseriata? Ulrich.

Horizon and localities—Lower Carboniferous, Saint Louis limestone: Barrett station (St. Louis county).

Polypora varsoviensis Ulrich.

Horizon and localities—Lower Carboniferous, Saint Louis limestone: Barrett station (St. Louis county).

Polypora cestriensis Ulrich.

Horizon and localities—Lower Carboniferous, Kaskaskia limestone: Ste. Genevieve.
Polypora tuberculata **Prout.**

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Polypora corticosa **Ulrich.**

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Polypora spinulifera **Ulrich.**

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Polypora submarginata **Meek.**

Polypora marginata Geinitz, 1866: Carb. und Dyas in Nebraska, p. 69, tab. v, figs. 11a-b. (Not McCoy, 1844.)

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City. Probably Red Oak (Iowa) and Nebraska City (Nebraska).

Fenestralia? sancti-ludovici **Prout.**

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: St. Louis.
Thamniscus furcillatus Ulrich.
Plate xxxll, fig. 6.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Genevieve.

Pinnatopora youngi Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Pinnatopora vinei Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Pinnatopora conferta Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Pinnatopora trilineata (Meek).

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Ptilopora acuta Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).
32 POLYZOANS.

Ptilopora valida Ulrich

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Bentonsport (Iowa).

Ptilopora cylindracea Ulrich

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Bentonsport (Iowa).

Ptilopora prouti Hall

Ptilopora prouti Hall, 1858: Geology Iowa, vol. I, p. 653, pl. xxii, figs. 6a-6c.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Barrett station (Saint Louis county).

Septopora cestriensis Prout

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Septopora biserialis (Swallow)

Plate xxxiv, figs. 1a-d.

Synocladia virgulacea Geinitz, 1866: Carb. und Dyas in Nebraska, p. 70.

Synocladia biserialis Meek, 1872: U.S. Geol. Sur. Nebraska, p. 156, pl. vii, figs. 5a-5e.

Synocladia biserialis White, 1877: U.S. Geog Sur. w. 100 Merid., vol. IV, p. 107, pl. vii, figs. 3a-3c.

Zoarium large, obconical, more or less irregular, usually folded; branches subequal, nearly parallel, united at regular intervals by lateral projections. Fenestrules usually more or less distinctly crescentic in shape. Zoëcial openings small, rather numerous.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Des Moines (Iowa); Upper Coal Measures: Kansas City.

Diplopora bifurcata Ulrich.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Sphrogropora parasitica Ulrich.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Rhombopora dichotoma Ulrich.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal ?; Burlington (Iowa).

Rhombopora varians Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).
Rhombopora transversalis Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Rhombopora attenuata Ulrich.

Horizon and localities—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Rhombopora tabulata Ulrich.

Horizon and localities—Lower Carboniferous, Kaskaskia limestone: Ste. Genevieve.

Rhombopora tenuirama Ulrich.

Horizon and localities—Lower Carboniferous, Kaskaskia limestone: Kaskaskia (Illinois).

Rhombopora crassa Ulrich.

Horizon and localities—Upper Carboniferous, Upper Coal Measures: Kansas City.
Rhombopora lepidodendroides Meek.

Plate xxxiii, figs. 4a-b.

Rhom b o p o ra le pid o d endroid e s Meek, 1872: U.S. Geol. Sur. Nebraska, p. 141, pl. vii, figs. 2a-f.

Rhom b o p o ra le pid o d endroid e s White, 1875: Expl. and Sur. w. 100 Merid., vol. IV, p. 99, pl. vi, figs. 5a-d.

Rhom b o p o ra le pid o d endroid e s Ramose slender, cylindrical or slightly compressed, and bifurcated at regular, distant intervals; divisions nearly straight between the points of bifurcation, where they diverge at angles of about 70° to 80°; composed of small, short, nearly round, tapering tubes that ascend from an imaginary axis obliquely outward, with a more or less curve to the surface, near which they are separated by interspaces, which in cross-sections show the minute celluar structure; calyces arranged very regularly in quincunx, so as to form vertical and oblique rows; distinctly rhombic at the surface, where their margins are roughened by small prominent, node-like grains, placed one at each corner, with smaller granules along the edges between.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Bactropora simplex Ulrich.

Horizon and localities — Lower Carboniferous, Keokuk limestone: Clark county.

Streblotrypa major Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Streblotrypa radialis Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Bentonspor (Iowa).
Streblotrypa nicklesi Ulrich.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Genevieve.

Streblotrypa distincta Ulrich.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Worthenopora spinosa Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Worthenopora spatulata (Prout).

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Barrett station (St. Louis county).

Cyclopora fungia Prout.

Cyclopora fungia Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 671, pl. lxviii, figs. 3-3g.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: St. Francisville (Clark county).
Cyclopora expatiata Ulrich.

Cyclopora expatiata Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 673, pl. lxviii, figs. 4-4d.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Proutella discoidea (Prout).

Proutella discoidea Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 674, pl. lxix, figs. 4-4d.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Cycloporella spinifera Ulrich.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Cycloporella perversa Ulrich.

Cycloporella perversa Ulrich, 1890: Geol. Sur. Illinois, vol. VIII, p. 676, pl. lxix, figs. 3-3b.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Bentonsport (Iowa).
CHAPTER XI.

BRACHIOPODS.

Lingula umbonata Cox.

Plate xxxv, fig. 4.

Shell thin, elliptical, slightly convex, wider in front than back of the middle, margins regularly rounding, rather sharply on the posterior border; umbo rather prominent; beak small.

Horizon and localities.—Upper Carboniferous, Coal Measures: Clinton (Henry county), Kansas City.

Lingulella lamborni Meek.

Plate xxxv, figs. 5a-d.

Shell small, compressed, broadly subovate, about one-fifth longer than wide. Ventral valve pointed at the beak, from which the nearly straight lateral slopes diverge at an angle of about 35°, to near the middle of each lateral margin, then regularly rounding forward; false cardinal area well developed and extending back, with the beak nearly one-fourth the length of the valve, behind that of the other valve, and having its mesial furrow for the peduncle well-defined, on each side of which is a diverging longitudinal line extending from the apex of the beak, so as to form the margins of the false area, which
is transversely striated; the interior marked by numerous little irregularly scattered pits, which are largest posteriorly and diminish in size forward; while near the anterior margin very obscure traces of minute radiating striae are sometimes seen; internal scars presenting a trilobate appearance, there being a short, mesial, rounded lobe nearly reaching to the middle of the valve; and nearly half way between this and each posterior lateral margin there is a long, slender, diverging lateral lobe or impression. Dorsal valve shorter than the other and subcircular in outline, its beak being apparently a little truncated; interior showing the same pitted appearance seen in the other valve; visceral and muscular impressions unknown. Surface of both valves marked by five concentric lines.

Horizon and localities.—Cambrian shales: Mine LaMotte (Madison county).

Discina nitida (Phillips).

Plate xxxv, fig. 6.

Shell small, circular in outline, low, conical, sides sloping nearly straight from the apex to the margins; apex situated toward the posterior border; opposite valve flat. Surface marked by concentric lines.

Horizon and localities.—Upper Carboniferous, Coal Measures: Clinton (Henry county), Lexington, Richmond (Ray county).
BRACHIOPODS.

Discina newberryi Hall.

Similar to *D. nitida*, but higher, and with the apex submarginal.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Sedalia, Springfield, Louisiana.

Discina convexa Shumard.

Plate xxxv, fig. 7.

Like *D. nitida* but very much larger; often reaching a diametric measurement of nearly an inch.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: near Richmond (Ray county).

Crana laevis *Sp. nov.*

Shell rather above medium size, somewhat depressed; apex subcentral; margins regularly rounded except on one side, which is truncated. Muscular scars prominent. Surface marked by concentric lines of growth.

Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Louisiana; and Burlington limestone: Louisiana.

Productus arcuatus Hall.

Productus arcuatus Hall, 1858: Geology Iowa, vol. I, p. 513, pl. vii, figs. 4a-b.

Shell small, with the ventral valve very long and arched, the hinge line short; surface marked by broad rounded radiating ridges, which are crossed by fine concentric lines.
Horizon and localities—Lower Carboniferous, Kinderhook beds: Hannibal (Marion county).

Productus lævicostus White.

Plate xxxviii, fig. 1.

Closely approaching P. cora, but narrower and more slender.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Louisiana; Burlington limestone: Louisiana.

Productus burlingtonensis Hall.

Productus flemingi, var. burlingtonensis Hall, 1858: Geology Iowa, vol. I, p. 598, pl. xii, figs. 3a-g.

Productus mesialis Hall, 1858: Geology Iowa, vol. I, p. 636, pl. xix, figs. 2a-c.

Shell rather above medium size, longer than wide, strongly arched; hinge-line shorter than greatest width of shell. Radiating costae rather coarse.

Horizon and localities—Lower Carboniferous, Burlington limestone: Hannibal, Helton (Marion county), Louisiana, Springfield, Ash Grove (Greene county); Keokuk limestone: St. Francisville (Clark county), Boonville (Cooper county).

Productus magnus Meek & Worthen.

Shell attaining a large size, subhemispherical, or in outline semioval; hinge line equaling, or slightly exceeding, the greatest breadth of the valves at any other part; ears nearly rectangular, not arched. Ventral valve moderately gibbous, or forming a more or less nearly regular, semicircular curve.
from the beak to the front, rounding down rather strongly on each side to the ears, which are not abruptly separated from the swell of the umbo; central region with a shallow, narrow mesial sinus, extending from the front about two-thirds of the way to the beak; umbonal region not very prominent; beak small, incurved, and passing but slightly beyond the hinge-margin; interior unknown. Dorsal valve distinctly concave but nearly flat over a large portion of the central region, and strongly curving up at the front and lateral margins, usually with a slight mesial ridge corresponding to the sinus of the other valve. Interior with a rugose ridge extending around near the front and lateral margins, so as to present a somewhat geniculated appearance, not seen on the outside; cardinal process stout, apparently rather short, and bifid, its base forming a short stout ridge, which soon becomes obsolete near the muscular scars, from between which a narrow ridge extends forward two-thirds to three-fourths the length of the valve, becoming sharply elevated and thin at the end; scars of adductor muscles elongated, parallel and rugose; reniform scars rather broad, and somewhat roughened by a few irregular wart-like prominences; space between the reniform scars and the mesial ridge flat, and without any traces of the sub-conical prominences seen in *P. giganteus*; posterior lateral regions irregularly pitted or punctured.

Surface of both valves ornamented by numerous, rather coarse, often waved or flexuous, striae, or small obscure costae, that increase by intercalation and division, all sometimes becoming nearly obsolete on or near the ears; fine concentric striae are also seen on all parts of the surface, and over the visceral region very obscure traces of small concentric wrinkles likewise occur. On the ventral valve, bases of small spines are seen irregularly scattered, being most numerous, largest and closely arranged on the ears and along the hinge-margin. No spines occur on the dorsal valve, but little pits seem to occupy their places. (Meek.)

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Ste. Genevieve, St. Francisville (Clark county).
Productus biseriatus Hall.

This shell belongs to the \(P. \) punctatus group, but is very small as compared with the typical species.

Horizon and localities — Lower Carboniferous, Keokuk limestone: St. Francisville (Clark county); Keokuk (Iowa).

Productus vittatus Hall.

Like \(P. \) punctatus of the Coal Measures, and perhaps identical with it.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Trenton (St. Louis county); Keokuk (Iowa).

Productus altonensis Norwood & Pratten.

Like \(P. \) arcuatus, but less arched, and with fewer radial costae.

Horizon and localities — Lower Carboniferous, Saint Louis limestone: St. Louis.

Productus marginicinctus Prout.

Productus wortheni Hall, 1858: Geology Iowa, vol. I, p. 635, pl. xix, figs. 1a-b.
Productus marginicinctus Hall, 1858: Geology Iowa, vol. I, p. 664, pl. xxiv, figs. 3a-c.

Shell small, costate, with a marginal thickening.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: St. Louis; Keokuk (Iowa).
Productus ovatus Hall.

Productus ovatus Hall, 1858: *Geology Iowa*, vol. I, p. 674, pl. xxiv, fig. 1.

A small oval form, with fine radiating costae.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: St. Louis.

Productus tenuicostus Hall.

Productus tenuicostus Hall, 1858: *Geology Iowa*, vol. I, p. 675, pl. xxiv, figs. 2a-d.

Closely related to and perhaps identical with *P. lavicostus*.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: St. Louis.

Productus cestriensis Worthen.

Shell small, arcuate, with hinge-line shorter than greatest width. Radiating costae coarse.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).

Productus americanus Swallow.

According to Meek & Worthen this form is closely related to their *P. magnus*.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Harrison county.
Productus longispinus Sowerby.

Plate xxxvii, fig. 4a-b.

Productus orbignyanus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 56, tab. iv, figs. 8, 9, 10, 11. (Not deKoninck, 1844.)

Productus horridus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 56, tab. iv, fig. 7. (Not Sowerby, 1822.)

Productus longispinus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 161, pl. vi, fig. 7, pl. viii, figs. 6a-c.

Productus muricatus White, 1875: U. S. Geol. Sur. W. 100 Merid., vol. IV, p. 120, pl. viii, fig. 4a-c.

Productus longispinus Meek, 1877: Geol. Exp. 40 Par., vol. IV, p. 78, pl. viii, figs. 4-4a.

Shell small, thin, somewhat wider than long; hinge-line longer than greatest width of shell. Ventral valve arched, with greatest convexity behind middle; mesial sinus well defined, broadly rounding; beak small, incurved, projecting beyond the hinge-line. Ventral valve concave, following closely the curve of the opposite one. Surface marked by obscure radiating costae, which often become obsolete over nearly the entire shell; these are often crossed by distinct concentric folds, which are more pronounced toward the beak; spines few, scattered.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

There seems to be but little doubt now that Norwood & Pratten’s species *P. splendens* and *P. wabashensis* are identical with the form under consideration. In regard to certain other allied shells reported by Geinitz from Nebraska, and their relations to *P. longispinus*, Meek says: “Concerning the iden-
tity of this shell with *P. orbignyi*, I am compelled to differ from Professor Geinitz. I am also satisfied, as elsewhere stated, that the little shell figured by Professor Geinitz under the name *P. horridus* on his plate iv (Carb. und Dyas in Nebraska) is nothing but a young individual of the species under consideration. This shell varies much in the distinctness of its costae, which are usually rather obscure. It is but necessary to examine a few good specimens to see by their smooth, non-costate umbonal region that they often attain a size even greater than that he has referred to *P. horridus*, without showing the slightest traces of radiating costae. Indeed, some individuals of mature size show but faint indications of ribs even near the front margin, while the various individuals present every intermediate gradation in this character between these and the most distinctly ribbed specimens. In addition to this, the extreme improbability of there being in these rocks a large, conspicuous species like *P. horridus*, when no traces of such a shell have ever been seen among all the vast collections that have been obtained from them throughout the great area in which they occur in the West, would alone be a sufficient reason for rejecting the conclusion that such a mere mite as this is the young of that species. But the necessity for such an improbable conclusion is entirely removed by the fact that this specimen was found associated with a very common and abundant species, the young of which evidently agrees exactly with it."

Regarding the form described by Norwood & Pratten as *Productus muricatus*, there is considerable doubt as to its identity with the *P. longispinus* of the Mississippi valley, although both Meek and Davidson so considered it. Throughout some parts of the continental interior at least, *P. muricatus* N. & P. presents characteristics that are remarkably constant; and when associated with *P. longispinus*, no hesitancy whatever would be entertained in separating the two forms. Were it not for the fact that the name *P. muricatus* had been used in 1836 by Phillips in his Geology of Yorkshire, Norwood & Pratten's species would be treated here as distinct from the shell
usually referred to Sowerby's form. But inasmuch as the synonymy of the species is still unsettled it does not appear advisable to propose a new term for the American *P. muricatus*.

Productus cora d'Orbigny.

Plate xxxvii, figs. 2a-c.

Productus cora d'Orbigny, 1843: Voyage dans l'Amerique Meridionale.

Productus cora Owen, 1852: Geol. Sur. Iowa, Wisconsin and Minnesota, tab. v, fig. 1.

Productus semireticulatus Hall, 1852: Stanbury's Exp. Gt. Salt Lake, p. 411, pl. iii, figs. 4. 5. (Not Martin, 1809.)

Productus cora Marcou, 1855: Geol. N. A., pl. vi, figs. 4-4a.

Productus flemingi Geinitz, 1866: Carb. und Dyas in Nebraska, p. 52, tab. iv, figs. 1, 2, 3, 4.

Productus calhounianus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 51. (Not Swallow, 1858.)

Productus koninckianus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 53, tab. iv, fig. 4. (Not de Verneuil, 1845.)

Productus prattenianus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 163, pl. ii, figs. 5a-c; pl. v, figs. 1-3, pl. viii, figs. 10a-b.

Productus prattenianus White, 1875: U. S. Geol. Sur. w. 100 Merid., vol. IV, p. 113, pl. vii, figs. 10a-c.

Shell of medium size, regularly rounded anteriorly, as long as wide, length of hinge-line equal to greatest breadth. Ventral valve regularly arched, with no medial sinus; umbonal region more or less gibbose; beak incurved; ears rather large, somewhat compressed, with a few well-marked wrinkles. Dorsal valve decidedly concave, slightly flattened posteriorly. Surface marked by numerous fine, radiating costae, and on the ventral side by a few scattered spines.

Horizon and localities.—Upper Carboniferous, Coal Measures: Calhoun (Henry county), Kansas City.

Productus cora was originally described from South America; while in North America the same form has been given, at
various times, a variety of names, White, who has carefully examined specimens from the type locality, has no hesitation in referring the shell commonly called *P. prattenianus* to d'Orbigny's species. Until quite recently no American writers, with the exceptions of Owen and Marcou, noted the identity of the two shells. It would appear, therefore, that *P. prattenianus* Norwood & Pratten is actually a synonym of *P. cora*; as is probably also *P. hildrethianus* of the same authors. The other titles given in the synonymy have already been discussed at length by Meek.

Productus symmetricus McChesney.

Plate xxxvi, figs. 2a-b.

Productus symmetricus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 167, pl. v, figs. 6a-b; pl. viii, fig. 13.

Similar to *P. nebrascensis*, but somewhat flatter; no mesial sinus; concentric folds much smaller, spines fewer, in single instead of double rows.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Productus nebrascensis Owen.

Plate xxxvii, figs. 3a-c.

Productus nebrascensis Owen, 1852: Geol. Sur. Iowa, Wisconsin and Minnesota, p. 584, pl. v, fig. 3.
Strophalosia horrescens Geinitz, 1866: Carb. und Dyas in Nebraska, p. 81. (Not Murchison.)
Productus nebrascensis Meek, 1872: U. S. Geol. Sur. Nebraska, p. 165, pl. ii, fig. 2; pl. iv, fig. 6; pl. v, figs. 11a-c.

Shell rather below medium size, slightly wider than long; cardinal margin about equal to greatest breadth. Ventral valve moderately arched, most abruptly curved toward the beak, which is incurved and extended beyond the hinge-line; mesial sinus shallow. Dorsal valve flattened centrally, concave toward the margins. Surface marked by broad, concentric wrinkles, and obscure, interrupted radiating costae, set with numerous short, stout spines, with fewer long ones interspersed.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

This is one of the most abundant and characteristic species of this genus occurring in the Coal Measures of the Mississippi basin. Although the original figures of Owen are defective and misleading in many particulars, there is now no doubt as to the identity of this species from the various localities in the state.

Norwood & Pratten's P. rogersi described from Huntsville, Missouri, is apparently an internal cast of the shell under consideration, in which the radiating ribs and concentric folds are very prominently marked. The forms described by McChesney as P. asper and P. wilberanus are manifestly merely local varieties of typical P. nebrascensis, as a careful comparison and examination of a large series of specimens has recently shown.

As to Geinitz's determinations of this form in the Carboniferous and Dyas in Nebraska, Meek says substantially as follows: Geinitz was certainly in error in referring this shell to Strophalosia horrescens, since it is positively not a Strophalosia at all, but a true Productus, as may be seen from any well-preserved specimens. It never has any traces of the cardinal area of the genus Strophalosia, as has been well shown in the careful examination of hundreds of good specimens, its cardinal margin being linear. By a comparison with Strophalosia horrescens, as illustrated in Geinitz's work on the German Per-
mian fossils (Dyas), the external difference between this genus and Strophalosia will be at once seen, the latter genus having a cardinal area. The presence of an area alone, however, is not always a sufficient distinction, since there is, in some very rare instances, an abnormally developed area in true Productus. The total absence of cardinal teeth and sockets, however, in the latter genus, clearly separates these types. That P. nebrascensis is entirely destitute of any traces of hinge teeth is well known to all who have examined the interior of this shell.

Productus semireticulatus (Martin).

Plate xxxvi, figs. 4a-c.

Productus semireticulatus Martin, 1809: Petref. Derb., p. 7, pl. xxxii, figs. 1, 2; pl. xxxiii, fig. 4.

Productus semireticulatus DeKoninck, 1844: Monog. Gen. Productus, pl. 8, fig. 1.

Shell rather large, wider than long; hinge-line equal to greatest breadth of valves. Ventral valve very convex, strongly incurved, with a broad, rounded, mesial sinus; beak prominent, closely incurved; ears well defined. Dorsal valve flattened more or less, curved toward the anterior margin. Surface of both valves marked by strong, rounded, radiating ribs, some of which bifurcate; in the visceral region these are crossed by many concentric folds. Spines stout, few and scattered.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Creighton (Cass county), Calhoun (Henry county).
BRACHIOPODS.

Productus punctatus (Martin).

Plate xxxvii, figs. 1a-c.

Anomites punctatus Martin, 1809: Petref. Derb., pl. xxxvii, fig. 6.
Productus punctatus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 169, pl. 2, fig. 6, pl. iv, fig. 5.

Shell large, thin, somewhat ovate; hinge-line considerably shorter than the greatest width of the valves. Ventral valve more or less strongly arched, with a broad shallow mesial sinus; beak incurved; ears not well defined. Dorsal valve slightly concave with a low median ridge. Surface marked by numerous well-defined concentric ridges, upon which are arranged many small spines.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Productus costatus Sowerby.

Plate xxxvi, figs. 1a-c.

Productus costatus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 159, pl. vi, figs. 6a-b.

Shell much like P. semireticulatus, but rather smaller, less robust, mesial sinus more pronounced, and radiating costæ less regular.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

As remarked by Meek this shell has been so generally designated under Sowerby’s title, that notwithstanding the perhaps
questionable identity with the typical *P. costatus*, it seems inad-
visable to make any nominal changes until careful and complete
comparisons have been instituted. The form appears to be
closely related to Martin’s *P. semireticulatus*; and eventually
may prove to be merely the young of that species. *P. port-
lockianus*, described by Norwood & Pratten from Carbonaire, is
regarded merely as an unimportant local variation of the
species. Like all the Carboniferous Producti, this shell has a
wide geographical range and quite an extensive distribution in
time.

Productella subalata (Hall).

p. 174.

Productus subalatus Hall, 1858: *Geology Iowa*, vol. I, p. 500, pl. iii, figs.
10a-e.

Very closely related to and perhaps identical with *P.
pyxidata*.

Horizon and localities.— Devonian, Callaway limestone: Callaway county.

Productella pyxidata (Hall).

Plate xxxviii, figs. 4a-d.

Productus pyxidatus Hall, 1858: *Geology Iowa*, vol. I, p. 498, pl. iii,
figs. 8a-e.

Productus shumardianus Hall, 1858: *Geology Iowa*, vol. I, p. 499, pl. viii,
fig. 2.

Shell rather large (for the genus), wider than long; car-
dinal extremities rounded; hinge-line usually shorter than
greatest width of shell; surface differing from a *Productus* in
being smooth, with concentric often imbricating lines of growth
and long spines, few in number. Often low, indistinct radiating
ridges are discernible.

Horizon and localities.— Lower Carboniferous, Kinderhook beds: Louisiana, Hannibal, Clarksville (Pike county).
BRACHIOPODS.

Chonetes geniculatus WHITE.
Plate xxxviii, fig. 3.

A small form with fine radiating lines.

Horizon and localities.—Lower Carboniferous, Louisiana (Kinderhook?) limestone: Louisiana, Clarksville.

Chonetes ornata SHUMARD.
Plate xxxviii, fig. 2.

Resembling somewhat *C. itemingi*, but having much coarser radiating costae.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Hannibal, Louisiana, Vandever Falls (Cooper county).

Chonetes logani NORWOOD & PRATTEN.

A small, semielliptic form with rather coarse, radiating lines.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal, Louisiana.

Chonetes illinoisensis WORTHEN.

Chonetes logani Hall, 1858: Geology Iowa, vol. I, p. 598, pl. xii, figs. 1a-b.

Somewhat resembling *C. logani*, but larger, and with about four times as many radiating lines.

Horizon and localities.—Lower Carboniferous, Lower Burlington limestone: Louisiana, Ash Grove (Greene county).

Chonetes mesoloba NORWOOD & PRATTEN.

Shell like *Ch. granulifera* but very much smaller, and having in the ventral valve a prominent mesial fold with a narrow and deep furrow on each side.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Chonetes millepunctatus Meek & Worthen.

Chonetes millepunctatus Meek & Worthen, 1873: *Geol. Sur. Illinois*, vol. V, pl. xxi, figs. 3a-b.

Shell large, thin, about two and one half times as wide as high. Dorsal valve almost flat, or slightly concave; hinge-line slightly shorter than the greatest width of the shell; extremities rounded; cardinal process stout; cardinal edge somewhat thickened within, forming an obscure ridge which reaches half way to the extremities. Surface marked by numerous closely arranged concentric costae, which are very regular.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Chonetes flemingi Norwood & Pratten.

Plate xxxviii, figs. 6a-b.

Shell similar to *Ch. granulifera*, but more convex, much smaller, with mesial sinus of the ventral valve very marked.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
BRACHIOPODS.

Chonetes lævis Keyes.

Plate xxxvii, figs. 5a-b.

Chonetes glabra Geinitz, 1866: Carb. und Dyas in Nebraska, p. 60, tab. iv, figs. 15-18. (Not Hall, 1857.)

Chonetes glabra Meek, 1872: U. S. Geol. Sur. Nebraska, p. 171, pl. iv, fig. 10; and pl. viii, figs. 8a-b.

Chonetes geinitzianus Miller, 1890: N. A. Geol. and Pal., p. 339.

Shell small, thin, transversely semi-elliptic; hinge-line as long as the greatest width of the shell, or often extended beyond the lateral margins. Ventral valve convex, with a broad, very shallow median depression, which is often wanting entirely; beak not prominent, appressed; cardinal area rather narrow but well defined centrally, becoming linear toward the extremities; foramen moderately wide; cardinal margin bearing from four to seven oblique spines on each side of the beak. Dorsal valve flat, or slightly concave; cardinal process small and slightly trilobate. Surface of shell apparently smooth, but under a magnifier it is seen to be marked by numerous very minute concentric lines and more prominent, often somewhat imbricated, lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

In the original diagnosis of this species the statement was made that the form was probably the same as that described by Geinitz as Chonetes glabra from the Upper Coal Measures of Nebraska. But inasmuch as Geinitz’s name had been preoccupied by Hall in 1857 for a species from the Upper Helderberg, Chonetes lævis becomes the next available name. Miller, however, has proposed still more recently the term Chonetes geinitzianus for the same shell, which of course becomes a synonym.

Lately this form has been found in great abundance in central Iowa scattered through a bed of bituminous shale near Des Moines. It is associated with its near congener Ch. mesoloba Norwood & Pratten. The differences between the two species,
as pointed out in the remarks accompanying the description of *Oh. laevis*, hold good throughout the entire series collected. As some of the specimens of the smooth species often show faint radiating striae, it has been suggested that these shells are merely water-worn individuals of other forms. This, however, does not appear to be the case, as a large number of both species have been found intimately associated; and in *Oh. mesoloba* the radiating striae are very sharply defined and well preserved. Besides, the conditions under which the mollusks of these species flourished show conclusively that all influences of wave action were absent during the deposition of the deposits.

Chonetes granulifera **Owen.**

Chonetes granulifera Owen, 1852: Geol. Sur. Wisconsin, Iowa and Minnesota, p. 583, tab. v, figs. 12a-c.

Chonetes mucronata Meek & Hayden, 1864: Pal. Upper Missouri, p. 22, pl. 1, figs. 5a–e.

Chonetes mucronata Geinitz, 1866: Carb. und Dyas in Nebraska, p. 58, tab. iv, figs. 12, 13, 14.

Chonetes granulifera Meek, 1872: U. S. Geol. Sur. Nebraska, p. 170, pl. iv, fig. 9, pl. vi, fig. 10; pl. viii, fig. 7.

Chonetes granulifera White, 1875: Expl. and Sur. w. 100 Merid., vol. IV, pt. ii, p. 122, pl. ix, figs. 8a–c.

Shell rather large, semicircular; hinge-line longer than greatest breadth of shell anteriorly. Ventral valve regularly convex, with the mesial sinus broad yet shallow; beak small, extending but slightly over the hinge area; cardinal margin provided with from seven to ten spines on each side of the beak. Area narrow, with a wide foramen which is partially covered by a pseudo-deltidium. Hinge teeth well defined, narrow, finely lined. Dorsal valve concave, rather closely appressed against the opposite valve. Surface of shell marked by numerous fine, radiating ribs, with a few concentric lines of growth which are usually more or less imbricated.
Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

This widely distributed form is quite abundant everywhere along the Missouri river in Missouri, Kansas, Nebraska and Iowa, and forms one of the most characteristic species of the Upper Coal Measures. *Ononetes mucronata*, described by Meek & Hayden, is manifestly the same species with the hinge-line somewhat more extended than in Owen's specimens. *Ononetes smithi* of Norwood and Pratten appears, in all essential respects, identical with the species under consideration.

Orthis occidentalis Hall.

Orthis occidentalis Meek, 1873: Geol. Sur. Ohio, Pal., vol. I, p. 96, pl. ix, figs. 3a-h.

Shell of moderate size, somewhat wider than long, transversely subquadrate. Surface ornamented by coarse costæ.

Horizon and localities.—Lower Silurian, Trenton limestone: Cape Girardeau.

Orthis fissicosta Hall.

Like *O. retrorsa* but much smaller, and with fewer and proportionally much larger radiating costæ.

Horizon and localities.—Lower Silurian, Trenton limestone: McCune station (Pike county), Cape Girardeau.
Orthis emacerata Hall.

Orthis emacerata Meek, 1873: Geol. Sur. Ohio, Pal., vol. I, p. 109, pl. viii, figs. 1a-d and 2a-g.

Shell small, plano-convex, rather depressed, transversely truncato-suboval, the length being about five-sixths its breadth; hinge-line perhaps always a little shorter than the greatest breadth of the valves; lateral margins generally rounding to the hinge, most prominent at or a little behind the middle, and rounding to the front, which is usually somewhat straightened, or very faintly sinuous, at the middle; or presents a regular semicircular outline. Dorsal valve nearly flat, or slightly convex on each side of a shallow mesial sinus, that commences very narrow at the beak, and usually widens rather rapidly to the front; beak very small, scarcely projecting beyond the edge of the area, and not incurved; area low at the middle, and narrowing off to nothing at the lateral extremities of the hinge, slightly arched, and directed obliquely backward; forearm very small and filled by the cardinal process. Interior very shallow, and provided with a slender mesial ridge that extends about half way forward from the hinge, between the muscular impressions, which are not usually well defined; scars of posterior pair of adductor muscles smaller, and usually deeper, than the interior, and situated close back under the brachial processes; those of the anterior pair three or four times the size of the posterior, sub-oval in form, and extending to near the middle of the valve; cardinal process very small and trifid; brachial processes comparatively rather stout and prominent; internal surface having the radiating striae of the exterior rather distinctly impressed through as it were, in consequence of the thinness of the shell, and finely granular, the granules being apparently connected with the punctate structure of the shell.

Ventral valve compressed, convex, the greatest convexity being near or a little behind the middle, along a more or less
prominent undefined ridge that sometimes, but not always, imparts a sub-carinate appearance to the central and umbral regions; beak small, projecting somewhat beyond that of the other valve; abruptly pointed and rather distinctly arched, but not strongly incurved; area about twice as high as that of the other valve; and with its sharply defined edges sloping to the lateral extremities of the hinge, directed and arched obliquely backward with the beak; foramen having nearly the form of an equilateral triangle, but rather narrowed upward to the apex of the beak, and partly occupied by the cardinal process of the other valve. Interior showing the teeth to be moderately prominent; concavity for the muscular impressions very shallow, small, somewhat bifid anteriorly, and not defined by a very distinct marginal ridge; scars of divaricator muscles apparently narrow, and situated on each side of a shallow mesial depression, which seems to include far back at its posterior end those of the very small adductors, merely separated from each other by a hair line; impressions of ventral adjustor muscles apparently wider and shorter than those of the divaricators; striae and the fine granules of the interior as in the other valve.

Surface of both valves ornamented by numerous distinct radiating striae, that usually bifurcate about three times between the beak and free margins; posterior lateral striae so strongly curved that a part of them run out on the hinge-line. Numerous very minute, regularly disposed concentric lines may also be seen by the aid of a magnifier, most distinctly defined in the furrows between the much larger radiating striae; while a few distant, subimbricating, stronger marks of growth are usually seen in adult shells. (Meek.)

*Horizon and localities.—*Lower Silurian, Hudson shales: Cape Girardeau.
Orthis tricenaria Conrad.
Plate xxxix, fig. 4.

Shell rather below medium size, flattened, sides straight, hinge-line as long as greatest width. Surface marked by strong, rather large radiating costae, which curve slightly outward as they leave the beak.

Horizon and localities—Lower Silurian, Hudson shales: McCune station (Pike county).

Orthis missouriensis Shumard.

Like *O. tricenaria*, but much wider in proportion to the length; hinge-line also longer than greatest width.

Horizon and localities—Lower Silurian, Girardeau limestone: Cape Girardeau.

Orthis subquadrata Hall.

Shell attaining about a medium size, rather distinctly resupinate, somewhat wider than long, subquadrate in general outline; moderately convex; cardinal margin shorter than the breadth of the valves, and rounding abruptly at the extremities into the lateral margins, which round and converge forward; front a little sinuous or straightened at the middle.

Dorsal valve more convex than the other, its most prominent part being near the middle; mesial sinus small and rather shallow, sometimes continued back nearly to the umbo, or in other instances scarcely more than reaching the middle; beak very short, or little distinct from the edge of the area, and more or less arched; area narrow, directed obliquely backward and downward. Interior with scars of the adductor muscles moderately distinct, the posterior pair being situated close
back under the brachial processes, one on each side of a well-defined rounded ridge, that becomes suddenly smaller between the anterior pair; cardinal process rhombic, subconical, moderately prominent, and having its posterior side marked by deeply impressed diverging striae; sockets well defined; brachial process rather strong, and directed obliquely forward and laterally; internal surface, excepting the radiately striated front and lateral margins, nearly smooth.

Ventral valve a little convex at the umbo, and flat or slightly concave between the umbo and the front and lateral margins, but sometimes having a low, very obscure mesial elevation toward the front; beak small and very short, or scarcely equaling that of the other valve, arched at the apex, but not strongly incurved; area about twice as high as that of the other valve; well-defined, tapering rather rapidly toward the lateral extremities, arched with the beak and directed backward and downward at decidedly less than a right angle to that of the other valve; foramen broad-triangular, and partly occupied by the cardinal process of the other valve. Interior with muscular scars occupying a rather deep bilobate impression, extending nearly or quite to the middle of the valve, and usually defined by a low ridge most distinct on each side; scars of adductor muscles small, separated by a mere trace of a raised line; those of the divaricator muscles of moderate size, longitudinally striated, and having their narrow posterior ends extending backward nearly to a small triangular, transversely striated space occupying the interior of the beak; those of the ventral adjustor muscles smaller and shorter than the divaricators, and situated nearly under the hinge teeth, which are moderately prominent, sub-trigonal and oblique; vascular markings with their lateral divisions curving up backward and sending off several branches, while the other divisions extend forward and bifurcate so as to occupy the anterior region; anterior and lateral margins crenate within by very short striae.

Surface of both valves ornamented by moderately stout, radiating striae, the posterior lateral of which curve so strongly
outward that a few of them run out on the cardinal edge before reaching the lateral margins; striae of the ventral valve nearly always increasing by bifurcation (some of them dividing two or three times), while that on the dorsal valve generally increases by the intercalation of shorter ones between the longer. A few distant sub-imbricating marks of growth are sometimes seen toward the front and lateral margins; while on perfectly preserved specimens the radiating striae may sometimes be seen to be roughened by minute elevated concentric lines, that are more or less interrupted in crossing some of the striae.

Horizon and localities—Lower Silurian, Hudson shales: Warren and Jefferson counties.

Orthis subcarinata Hall.

A rather small subovate form resembling *O. elegantula*.

Horizon and localities.—Upper Silurian limestone: Cyrane (Pike county), Bailey landing (Perry county).

Orthis iowensis Hall.

Plate xxxvili, figs. 6a-c.

Orthis iowensis Hall, 1858: Geology Iowa, vol. I, p. 488, pl. ii, figs. 4a-1.

Shell transversely ovoid; hinge-line short, about one-half the width of the valves. Ventral valve much deeper than the dorsal, with a broad median fold; beak prominent, area small. Dorsal valve flattened, with a broad shallow sinus. Surface marked by fine radiating lines.

Horizon and localities.—Devonian, Hamilton limestone: "Grand Tower" (Perry county).
Orthis swallowi Hall.

Orthis swallowi Hall, 1858: Geology Iowa, vol. I, p. 597, pl. xii, figs. 5a-b.

Shell very large, wider than long; hinge-line long, but somewhat shorter than greatest width of the valves; cardinal extremities rounded. Dorsal valve quite convex, with occasionally obscure traces of a mesial sinus. Surface marked by numerous closely arranged radiating lines and concentric lines of growth.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal.

Orthis burlingtonensis Hall.

Orthis michelina, var. burlingtonensis Hall, 1858: Geology Iowa, vol. I, p. 596, pl. xii, figs. 4a-b.

Shell rather small, appressed, subcircular, hinge-line rather short. Dorsal valve somewhat deeper than the ventral. Surface of both valves marked by fine radiating costae.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Louisiana, Hannibal; Burlington (Iowa); Burlington limestone: Sedalia, Ash Grove (Greene county), Springfield, Hannibal, Louisiana, Ste. Genevieve.

Orthis keokuk Hall.

Orthis keokuk Hall, 1858: Geology Iowa, vol. I, p. 640, pl. xix, figs. 5a-b.

Very large, with small radiating costae.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Wayland (Clark county).
Orthis dubia Hall.

Similar to *O. burlingtonensis* but very much smaller.

*Horizon and localities.—*Lower Carboniferous, Saint Louis limestone: Barrett (St. Louis county).

Orthis pecosii Marcou.

Orthis pecosii Marcou, 1858: Geol. N. A., p. 48, pl. vi, figs. 14a-b.

Orthis pecosii White, 1875: U. S. Geol. Sur. w. 100 Merid., vol. IV, p. 125, pl. ix, figs. 5a-c.

Shell small, sub-circular in outline; hinge-line short. Ventral valve moderately convex, more or less distinctly flattened anteriorly; beak small, rather prominent, pointed, and arched over the small well-marked area; foramen narrow. Dorsal valve usually slightly more arched than the opposite valve, and generally showing traces of a very shallow median sinus; area well defined, but smaller than in the other valve. Surface marked by numerous fine radiating ribs, which increase by intercalation; these are crossed by lines of growth.

*Horizon and localities—*Upper Carboniferous, Coal Measures: Kansas City.

Platystrophia lynx (Eichwald).

Spirifer lynx Von Buch, 1837: Ueber Delth., p. 44.

Shell attaining a large size, nearly equivale, wider than long, with a transversely oval sub-quadraté outline, or, in old
specimens, often becoming so gibbous as to assume a sub-globose form; hinge-line usually a little less than the greatest breadth of the valves but sometimes equaling, or somewhat exceeding, the same; cardinal extremities more or less obtusely angular, nearly rectangular, or sometimes rather sinuous behind and rounding to the front, which is a little sinuous, rounded or somewhat prominent at the middle; beaks and cardinal areas of the two valves nearly equal, the former incurved and approximate, or, in adult shells, sometimes contiguous. Dorsal valve generally a little more convex than the other, in some examples rather decidedly so (its greatest convexity being near the middle), provided with a moderately prominent, rather rounded mesial fold, that commences at or near the beak, and continues forward, gradually widening and rounding over with the curve of the valve to the front, where it is moderately elevated, with more or less sloping sides; lateral slopes convex; beak projecting beyond the hinge margin, strongly incurved, particularly in old individuals, which sometimes have the gibbous umbo projecting even a little beyond that of the other valve; cardinal area well developed, distinctly defined, nearly as wide as that of the other valve, directed backward, and more or less strongly incurved; foramen broad-triangular, and not closed by the cardinal process. Interior showing the cardinal process to be very small, or merely having the character of a low linear ridge in the rostral cavity; posterior pair of muscular impressions corrugated, and decidedly larger and more widely separated than the others.

Ventral valve with a mesial sinus corresponding to the fold in the other valve, and terminating at the front in a rather short, somewhat rounded projection, that curves more or less upward into a sinuosity of the same size and form in the margin of the dorsal valve; beak usually a little less strongly incurved than that of the other, and very slightly more prominent at its apex; cardinal area about one-fourth to one-third higher at the middle than in the dorsal valve, and narrowing less rapidly toward the lateral extremities; incurved and directed backward, but a little less strongly so than the other;
foramen having nearly the form of an equilateral triangle, or sometimes slightly wider than high, or the reverse. Interior with hinge teeth moderately prominent and trigonal; cavity for the reception of the muscular attachments comparatively small, scarcely reaching the middle of the valve, longer than wide, or elongate-oval, with nearly straight and parallel sides, always well defined by the dental ridges, and on old specimens extremely profound, owing to the thickening of the interior of the cardinal region of the valve on each side.

Surface of each valve ornamented by about sixteen to twenty-four strong, more or less angular radiating plications, of which three or four (rarely five) occupy the mesial sinus, and from four to six the mesial fold; plications generally simple, but occasionally some of those in the sinus and on the fold, and still more rarely, a few of those on the lateral slopes, bifurcating once; lines of growth moderately distinct, particularly near the free margins of adult shells, where they present a distinctly zigzag appearance in crossing the plications and the furrows between them. Protected portions of the surface of well-preserved specimens also often show, under a strong magnifier, numerous regularly arranged minute granules, probably coincident with the punctures of the shell substance. (Meek.)

Horizon and localities.—Lower Silurian, Trenton limestone: Cape Girardeau.

Platystrophia acutilirata (Conrad).

Orthis acutilirata Meek, 1873: *Geol. Sur. Ohio, Pal.*, vol. I, p. 119, pl. x, figs. 5a-g.

Like *P. lynx* but with hinge-line extended, often making the shell twice as wide as long.

Horizon and localities.—Lower Silurian, Hudson shales: Louisiana.
Streptorhynchus filitexta (Hall).

Strophomena filitexta Meek, 1873: Geol. Sur. Ohio, Pal., vol. I, p. 83, pl. vi, figs. 5a-d.

Like S. planumbonum but longer, and ornamented with much finer radiating lines.

Horizon and localities.—Lower Silurian, Hudson shales: Louisiana.

Streptorhynchus subplanum (Conrad).

Somewhat like S. planumbonum but flat, larger, and with much coarser radiating costae.

Horizon and localities.—Upper Silurian limestone: Cyrene (Pike county).

Streptorhynchus lens White.

Plate xxxix, figs. 2a-b.

A small circular form with narrow cardinal areas.

Horizon and localities.—Lower Carboniferous, Louisiana (Kinderhook?) limestone: Louisiana, Clarksville.

Streptorhynchus crenistria (Phillips).

Plate xxxviii, figs. 8a-h.

Producta incurvata Shepard, 1838: Am. Jour. Sci., p. 144, figs. 1, 2, 3.

Orthis robusta Hall, 1838: Geol. Iowa, vol. I, p. 713, pl. xxviii, figs. 5a-e.

Hemipronites crassus Meek & Hayden, 1864: Palæ. Upper Missouri, p. 26, pl. 1, figs. 7a-d.
Orthis crenistria Geinitz, 1866: Carb. und Dyas in Nebraska, p. 46, tab. iii, figs. 20, 21.
Hemipronites crassus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 174, pl. v, figs. 10a-b; and pl. viii, fig. 1.
Hemipronites crenistria White, 1875: U. S. Geog. Sur. w. 100 Merld., vol. IV, p. 124, pl. x, fig. 9a.

Shell quite variable, semi-circular to nearly round in outline, generally, however, considerably wider than long; hinge-line usually shorter than the greatest breadth of the valves. Dorsal valve moderately convex; beak not distinct. Ventral valve convex at first, but becoming flat and then sometimes concave around the anterior margin; hinge-area varying considerably in height; plane or slightly concave, more or less distinctly marked by fine lines; foramen closed. Surface ornamented by numerous fine radiating ribs, of which every fourth or fifth is much more prominent than the rest; these are crossed by fine lines of growth.

Horizon and localities.—Upper Carboniferous, Coal Measures: Kansas City, Clinton, Lexington.

Meekella striatocostata (Cox)
Plate xxxix, figs. 1a-c.

Streptorhynchus pyramidalis Newberry, 1861: Ives' Exp. Exped. Colorado River, p. 126

Orthis striatocostata Geinitz, 1866: Carb. und Dyas in Nebraska, p. 48, tab. iii, figs. 22-24.

Meekella striatocostata Meek, 1872: U. S. Geol. Sur. Nebraska, p. 175, pl. v, figs. 12a-c.

Meekella striatocostata White, 1875: U. S. Geol. Sur. w. 100 Merid., vol. IV, p. 126, pl. 1x, figs. 4a-c.

Shell of medium size, subglobose, with from ten to fifteen large radiating plications, which become more or less angular toward the margin; hinge-line much shorter than the greatest breadth of the valves. Ventral valve somewhat larger than the other; cardinal area relatively narrow transversely, often higher than wide, and finely lined; foramen quite narrow, covered by a rounded pseudo-deltidium having a distinct median ridge. The apical portion of the valve is more or less twisted and arched, though occasionally undistorted. Dorsal valve usually less convex than the ventral, often more or less flattened centrally and in front; beak incurved, projecting but slightly beyond the hinge-line. Surface of both valves ornamented by minute radiating lines, which anteriorly converge on each side of the several plications. These are crossed by more or less well-defined lines of growth.

Horizon and localities.—Lower Carboniferous, Upper Coal Measures: Kansas City.

Strophomena deltoidea Conrad.

Resembling an immature S. alternata, but with the cardinal extremities produced somewhat and the front margin extended.

Horizon and localities.—Lower Silurian, Trenton limestone: McCune station (Pike county).
Plectambonites rhomboidalis (Wilckens).

Conchita rhomboidalis Wilckens, 1769: Nachreicht. von seltenen Verst., p. 77, pl. viii, figs. 43-44.

Strophomena rhomboidalis Meek, 1873: Geol. Sur. Ohio, vol. I, Pal., p. 75, pl. v, figs. 6a-e.

Like *Strophomena* but with flattened, visceral area covered with prominent concentric wrinkles, and with abruptly upturned frontal and lateral borders.

Horizon and localities.—Lower Silurian, Hudson shales: Cape Girardeau; Lower Carboniferous, Chouteau (Kinderhook) limestone: Curryville (Pike county); Burlington limestone: Louisiana.

Strophodonta demissa (Conrad).

Strophodonta demissa Hall, 1858: Geology Iowa, vol. I, p. 495, pl. iii, figs. 5a-k.

Shell semi-elliptic, about as wide as long; hinge-line usually slightly longer than the greatest width; cardinal area narrow. Surface marked by strong, angular costae.

Horizon and localities.—Devonian, Callaway limestone: Dauphin (Callaway county).

Strophomena alternata (Conrad).

BRACHIOPODS.

Shell attaining a large size, semi-oval, the breadth being nearly always greater than the length, but varying from about equal to the latter to the proportions of near nine to seven; hinge-line as long at the breadth of the valves at any point farther forward, or somewhat longer; lateral extremities rectangular, sometimes compressed and moderately deflected; lateral margins straight, a little convex, or slightly sinuous posteriorly, and rounding forward to the front, which is semi-circular in outline, or sometimes so prominent and narrowly rounded in the middle as to impart a sub-trigonal form to the general outline of the valves. Dorsal valve flattened in the umbonal and cardinal regions, and gently or more or less strongly concave in the central and anterior portions, and curved upward around the anterior and lateral margins; beak small, but projecting slightly beyond the edge of the area, which is very narrow, or sub-linear, and directed nearly backward. Interior with cardinal process strong directed obliquely forward, with its two divisions distinctly diverging and flattened and longitudinally striated on their posterior faces; sockets for the reception of the teeth of the other valve rather well defined; socket ridges very small, and uniting behind the cardinal process to form a kind of false deltidium; muscular scars comparatively small, but deeply impressed near the cardinal process on each side of a small, short, mesial ridge, and nearly surrounded by a low obtuse ridge formed by the thickening of the adjacent internal surface of the valve; anterior and lateral margins more or less thickened and geniculated within (especially in adult shells), the thickened zone being transversely furrowed and sometimes granular, while outside of it the immediate edge of the valve is suddenly flattened, and minutely striated and granulated.

Ventral valve a little convex at the umbo, but generally much compressed over the whole visceral region, in the adult (which included the whole surface of the young and half-grown shell), but becoming more convex (sometimes strongly so) anteriorly or antero-centrally and laterally, and thence more or less curved up to the anterior and lateral margins; area of
moderate height, flat, and directed obliquely backward nearly at right angles to that of the other valve; beak very small, scarcely distinct from the margin of the area, and minutely perforated; foramen broadly triangular, and arched over above by the pseudo-deltidium, which is very deeply sinuous on its inner edge, the sinus being nearly or quite closed by the dental process and pseudo-deltidium of the other valve.

Interior with cardinal margin somewhat carinate within; hinge teeth moderately prominent, remote and widely divergent; dental ridges obscure and extending obliquely outward and forward, but not produced or curving to surround a saucer-shaped cavity for the muscular scars; scars of adductor muscles narrow, long and closely approximated or almost in contact; those of cardinal muscles on each side very large, fan-shaped but shallow, separated sometimes by a small ridge in advance of the adductor scars, and marked by radiating furrows and ridges; while the anterior and lateral regions are usually marked by striae and scattering granules. Surface of both valves ornamented by numerous radiating striae, that increase in number, on the ventral valve, mainly by intercalation, and are usually arranged with one to six or eight smaller and shorter ones between each two larger and more prominent ones, the largest one of which often occupies the mesial line; while on the dorsal valve they more frequently increase by division, and are generally of more uniform small size. On well-preserved specimens all the radiating lines are crossed by numerous very minute, regular, closely arranged concentric striae, that are invisible without the aid of a magnifier; a few moderately distinct, sub-imbricating marks are often seen near the free margins of adult shells. (Meek.)

Horizon and localities.—Lower Silurian, Hudson shales: Cape Girardeau.
Strophomena planumbona (Hall).

Plate xxxix, fig. 3.

Strophomena planumbona Hall, 1862: Geol. Sur. Wisconsin, p. 54, fig. 7.

Strophomena planumbona Meek, 1873: Geol. Sur. Ohio, Pal., vol. I, p. 79, pl. vi, figs. 3a–h.

Shell rather small, or scarcely attaining a medium size, concavo-convex, semi-oval, or more than semicircular in outline; hinge-line generally a little longer than the breadth of the valves at any point farther forward; lateral extremities, in most examples, somewhat less than rectangular, or sometimes rather acute, more or less compressed and deflected; lateral margins a little contracted posteriorly, and rounding to the front, which forms a regular semicircular curve. Dorsal valve flat in the umbonal region, and rather strongly and evenly convex in the central and interior regions, from which it rounds off abruptly to the front and lateral margins; beak very small, or not distinct from the edge of the narrow or sublinear area, which is inclined nearly directly backward, but not incurved. Interior showing the cardinal process to be small, depressed, divided to its base into two diverging tooth-like parts, a little flattened on their posterior faces, and directed very obliquely forward and outward; socket ridges short and oblique; mesial ridge low, extending but a little distance forward; while the space between it and the socket ridge, on each side, is occupied by a moderately distinct muscular scar.

Ventral valve broadly and rather deeply concave in the central and anterior regions, and sharply convex at the beak, which is very small, abruptly pointed, scarcely projecting beyond the edge of the area, and usually minutely perforated; area moderately high, extending the whole length of the hinge, generally but little sloping laterally, flattened and inclined more or less backward; foramen closed by a prominent, rounded pseudodeltidium that is transversely striated, and rather broadly...
sinnous on its inner edge, for the reception of the cardinal process of the other valve. Interior showing hinge teeth to be well developed, trigonal, and striated on their posterior sides; while from their inner bases the dental laminae extend forward so as nearly to encircle the usual saucer-shape depression for the muscular scars, which is sometimes divided by a small, linear mesial ridge; cardinal margin prominent and sharp within on each side of the hinge teeth; anterior and lateral regions more or less thickened within, and roughened by the crossing of the vascular markings, which are scarcely visible on any part within this zone.

Surface of both valves ornamented by numerous fine, closely crowded, radiating striae, that are often alternately a little larger and smaller, or on some parts, with several of the smaller ones between each two of the larger—the smaller being always shorter than the larger, or ending at various distances between the free margins and the beaks, without coalescing with those between which they are intercalated. Striae and furrows minutely crenulated by extremely small, very regular, closely arranged concentric lines, invisible without the aid of a magnifier; a few subimbricating marks of growth are likewise sometimes near the free margins. (Meek.)

Horizon and localities—Lower Silurian, Hudson shales: Louisiana, Cape Girardeau.

Strophodonta? cymbiformis Swallow.

Shell rather large, like S. demissa but with a broad, median sinus and fold.

Horizon and localities.—Devonian, Callaway limestone: Dauphin (Callaway county).
Leptæna sericea Sowerby.

Plate xxxix, fig. 9.

Leptæna sericea Meek, 1873: Geol. Sur. Ohio, Pal., vol. I, p. 70, pl. 5, figs. 3a-h.

Shell small, transverse, semi-oval, approaching semi-circular, concavo-convex; hinge-line equaling, or more frequently a little longer than the breadth of the valves at any point farther forward; lateral extremities varying from somewhat acutely angular to nearly or quite rectangular, and not properly reflected; anterior and lateral margins forming together nearly a regular semi-circle curve. Dorsal valve concave, its deepest concavity being near the middle; beak not distinct from the cardinal margin; area narrow or nearly linear, and ranging at right angles to the plane of the valves. Interior showing cardinal margin to be minutely crenulated toward the lateral extremities; cardinal process moderately prominent, and trifid, the middle division being most prominent, with a deep pit at its inner base; brachial ? process short, appressed, and widely divergent; muscular impressions generally obscurely defined, occupying an obcordate area, and separated from each other by two subparallel, narrow ridges that sometimes coalesce near the base of the cardinal process; each impression usually nearly equally divided by a slender linear, straight ridge; anterior and lateral regions more or less roughened by minute granular radiating striae.

"Ventral valve moderately convex, being nearly evenly but gently arched along the middle from beak to the front, and thus following so nearly the curve of the other valve as to leave but a very thin visceral cavity within; beak very small, or scarcely if at all distinct from the cardinal margin; area twice or three times as high as that of the other valve, inclined backward, or more or less nearly parallel to the plane of the valves; foramen arched over near the beak by a small false deltidium, closed between this and the hinge margin by the prominent cardinal process of the valve. Interior showing
hinge margin to be obscurely marked with minute pits for the reception of the crenulations of that of the other valve; teeth small; muscular impressions long, narrow, separated behind by a short linear mesial ridge, and diverging and extending forward beyond the middle of the valve, with a moderately distinct dental ridge along the lateral margin of each; anterior and lateral regions granulo-striated. Surface of both valves marked by numerous minute, closely arranged radiating striae, about every fourth, fifth or sixth one of which is a little larger and more prominent than those between. (Meek.)

Horizon and localities.—Lower Silurian, Hudson shales: Louisiana.

Leptæna mesacosta Shumard.

Shell small, about as wide as long, the hinge-line being much shorter than in *L. sericea*.

Horizon and localities.—Lower Silurian, Girardeau limestone: Cape Girardeau.

Syntrilasma hemiplicata (Hall).

Shell subglobose, with several large, rounded plications anteriorly; hinge-line about one-third the greatest width of the valves. Ventral valve not as convex as the dorsal; beak not prominent, somewhat incurved; cardinal area small, broad, triangular; foramen about as wide as high. Dorsal valve much more arched than the other; beak much incurved; area narrow. Surface ornamented with small, radiating lines, which are crossed by lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Spirifer perlamellosa? Hall.

A small shell with large, rounded, radiating folds, and imbricated lines of growth.

* Horizon and localities.*—Upper Silurian limestone: Bailey landing (Perry county).

This form is reported by Meek & Worthen from Missouri, but it probably cannot be regarded as strictly identical with the New York species described by Hall.

Spirifer parryana Hall.

Plate xi, figs. 4a-b.

* Spirifer euriteines * Owen, 1852: U. S. Geol. Sur. Wisconsin, Iowa and Minnesota, p. 586, tab. iii, figs. 2-2a and 6-6a. (Not Owen, 1844.)
* Spirifer parryanus * Hall, 1858: Geology Iowa, vol. I, p. 609, pl. iv, figs. 8a-b.

* Spirifer capax * Hall, 1858: Geology Iowa, vol. I, p. 520, pl. vii, figs. 7a-d.
* Spirifer fornacula * Meek & Worthen, 1868: Geol. Sur. Illinois, vol. III, p. 433, pl. xiii, figs. 8a-e. (Not Hall, 1857.)

A rather large, robust form with broad area.

* Horizon and localities.*—Devonian, Hamilton? limestone: Perry county.

Spirifer ligus Owen.

A large, very variable form, with long hinge-line and usually rather broad cardinal area.

* Horizon and localities.*—Devonian, Hamilton? limestone: Perry county.
Spirifera subrotundata Hall.

Spirifer subrotundatus Hall, 1858: Geology Iowa, vol. I, p. 521, pl. vii, figs. 8a-b.

Rather below medium size, gibbous, subglobose; hinge-line shorter than greatest width of shell, cardinal extremities rounded. Surface marked like *S. grimesi*.

Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Sedalia.

Spirifera taneyensis Swallow.

A small, gibbous, submucronate shell with large plications, about ten in number.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Taney county, according to Swallow.

Spirifera cooperensis Swallow.

A small, Athyris-like form, resembling the common *S. perplexa* from the Coal Measures, but having obscure radiating folds.

Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Chouteau Springs (Cooper county).

Spirifera marionensis Shumard.

Spirifer marionensis Hall, 1858: Geology Iowa, vol. I, p. 511, pl. vi, figs. 1a-c.

BRACHIOPODS.

Shell quite variable, usually somewhat wider than long, thick; hinge-line varying in length from once to twice the length, and often mucronate. Cardinal area narrow. Surface marked by simple rounded ridges, 20 or 25 on each side of the median fold.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Chouteau Springs (Cooper county), Hannibal, Louisiana, Clarksville (Pike county), and elsewhere.

Spirifera peculiariis Shumard.

A small subgloboso form with broad plications.

Horizon and localities.—Lower Carboniferous, Kinderhook limestone: Chouteau Springs (Cooper county).

Spirifera grimesi Hall.

Shell very large, subgloboso, usually longer than wide; hinge-line about three-fourths as long as the greatest width. Dorsal valve less convex than ventral, with a low, broad mesial fold, which becomes quite prominent at the anterior border. Ventral valve very convex, especially toward the umbo; mesial sinus broad, shallow; area rather short, moderately high; foramen wide; beak incurved. Surface marked by low, broad radiating ribs, which occupy the median fold and sinus as well as the other parts of the shell. The folds again marked by fine longitudinal lines.

Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Hannibal, Louisiana, Sedalia; Burlington limestone: Palmyra (Marion county), Hannibal, Louisiana, Sedalia, Springfield, Ste. Genevieve.

This species is one of the most characteristic forms of the Burlington limestone. As remarked by Hall, the shell is seldom found entire and undistorted, though one of the most abundant and widely distributed forms. The valves are easily separated, and being very thin, the specimens are commonly flattened out, thus making the hinge-line appear much longer.
than it really is. At first glance it then appears strikingly like *S. logani* Hall, but that form is a much heavier shell, has a hinge-line very much longer, a lower cardinal area, and coarse radiating costae. While probably closely related to *S. grimesi* genetically, *S. logani* seems to be sufficiently distinct to need a separate specific designation. So far as is known, it has not been found below the Keokuk limestone. *S. grimesi* as it occurs in the Kinderhook is still lighter in weight, has a still shorter hinge-line and finer ornamentation than the typical examples of the Burlington. The species is not so abundant in Upper Burlington as in the Lower division; and may extend into the Keokuk.

Spirifer forbesi Norwood & Pratten.

Plate xi, fig. 3.

Spirifer forbesi Hall, 1858: *Geology Iowa*, vol. I, p. 600, pl. xiii, fig. 1.

Shell with hinge-line greatly extended, flattened, mesial fold and sinus small; radiating ribs, flattened, rather large.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal, Louisiana, Sedalia, Springfield.

Spirifer imbrex Hall.

Spirifer imbrex Hall, 1858: *Geology Iowa*, vol. I, p. 601, pl. xiii, fig. 2.

Shell similar to *S. forbesi*, but hinge-line much shorter, mesial fold much broader, and lines of growth imbricated.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal, Louisiana.

Spirifer lineatoides Swallow.

Plate xi, fig. 6.

Shell large, robust, transversely elliptical. Ventral valve more convex toward the beak; hinge-line short, rather high; beak strongly incurved. Dorsal valve moderately convex, mesial fold broad, low, or scarcely defined. Surface marked by broad punctato-concentric bands.
BRACHIOPODS.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal.

The specimen figured under this name, though slightly smaller than Swallow's type, is believed to represent this species.

Spirifera logani Hall.

Spirifer logani Hall, 1858: *Geology Iowa*, vol. I, p. 647, pl. xxi, figs. 1a-b, and 2.

Shell very large, with close analogies to *S. grimesi*, but having a much longer hinge-line, coarser plications and much thicker test.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Wayland and St. Francisville (Clark county); Keokuk (Iowa).

Spirifera levigata of Swallow is too poorly described to deserve recognition. Moreover, it seems probable that Swallow had in hand a water-worn valve of *S. logani*, not uncommon at Keokuk and elsewhere.

Spirifera kelloggi Swallow.

A small plicated form closely resembling *S. spinosus* of Norwood & Pratten, but apparently having no spines.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Spirifera keokuk Hall.

Plate xl, fig. 2.

Spirifer keokuk Hall, 1858: *Geology Iowa*, vol. I, p. 642, pl. xx, figs. 3a-d.

Shell rather small, robust, transversely elliptical. Plications coarse, rounded; mesial fold and sinus well defined.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Wayland (Clark county); Keokuk (Iowa).

G—7
Spirifer rostellata Hall.

Spirifer rostellatus Hall, 1858: Geology Iowa, vol. I, p. 641, pl. xx, figs. 2a–c.

Of the *S. grimesi* type, but very much smaller.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Bonaparte (Iowa).

Spirifer pseudolineata Hall.

Spirifer pseudolineatus Hall, 1858: Geology Iowa, vol. I, p. 645, pl. xx, fig. 4.

Like *S. lineatoides* but broader, smaller, with mesial fold more pronounced, and ornamentation finer.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: St. Francisville (Clark county).

Spirifer leidyi Norwood & Pratten.

Shell similar to that of *S. keokuk*.

Spirifer increbescens Hall.

Spirifer increbescens Hall, 1858: Geology Iowa, vol. I, p. 706, pl. xxvii, figs. 6a–l.

Very closely related to *S. keokuk* and may eventually prove identical with that species.

BRACHIOPODS.

Spirifer setigera Hall.

Spirifer setigerus Hall, 1858: Geology Iowa, vol. I, p. 705, pl. xxvii, figs. 4a-b.

Of the *S. lineatus* type, but larger than that species, and with a more clearly defined median fold and sinus.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).

Spirifer contracta Meek & Worthen.

A large Athyris-like shell, but with the other *Spirifer* characters.

Horizon and localities—Lower Carboniferous, Kaskaskia limestone: Chester (Illinois).

Spirifer camerata Morton.

Plate xi, figs. 5a-e.

Spirifer triplicatus Hall, 1852: Stansbury’s Exped. Gt. Salt Lake, p. 410, pl. ii, fig. 5.

Spirifer fasciger? Owen, 1852: Geol. Sur. Wisconsin, Iowa and Minnesota, pl. v, fig. 4.

Spirifer meusebachanus Roemer, 1852: Kreid. von Texas, p. 88, tab. xi, fig. 7.

Spirifer cameratus Hall, 1858: Geology Iowa, vol. I, p. 709, pl. xxvii, figs. 2a-b.

Spirifer cameratus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 183, pl. vi, fig. 12, pl. viii, fig. 15.

Spirifer cameratus White, 1875: U. S. Geog. Sur. w. 100 Merid., p. 132, pl. x, figs. 1a-d.

Shell of medium size, rather ventricose, semicircular to subtrigonal in outline; hinge-line equaling or longer than greatest breadth of the valves. Ventral valve the more arched; beak incurved, prominent; cardinal area well defined, moderately high, somewhat curved; foramen equilaterally triangular; median sinus well marked. Dorsal valve with an inconspicuous beak; mesial fold sharply rounded. Surface marked by prominent radiating ribs, which usually group themselves into fascicles of three to five or more. Lines of growth seldom well defined.

Horizon and localities.—Upper Carboniferous, Coal Measures: Clinton (Henry county), Kansas City, Lexington.

Spirifer rockymontana MARCOUR.

Spirifer opimus Hall, 1858: Geology Iowa, vol. I, p. 711, pl. xxviii, figs. 1a-b.

Closely related to _S. keokuk_ and probably the genetic successor of that species.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Spirifer perplexa McChesney.

Spirifer lineatus (American authors, not Martin, 1809).

Shell much like an Athyris in general appearances, but with distinct cardinal area. Surface nearly smooth, but having faint radiating lines, and crenulated lines of growth, from which spring minute spines, apparently.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
BRACHIOPODS.

Spirifer planoconvexus Shumard.

Spirifer planoconvexus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 42, tab. iii, figs. 10-18.

Martinia planoconvexa McChesney, 1867: Trans. Chicago Acad. Sci., vol. 1, p. 34, pl. 1, fig. 1.

Spirifer planoconvexus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 186, pl. iv, figs. 4a-b, and pl. viii, figs. 2a-b.

Shell quite small, plano-convex, subcircular in outline; hinge-line somewhat shorter than greatest width of the valves; surface glabrate, with indistinct lines of growth, but under a magnifier often showing minute spines. Ventral valve strongly arched, often with faint traces of a slight median depression; beak prominent; area of moderate height; foramen narrow. Dorsal valve nearly plane; beak not well-defined; area narrow.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Spiriferina clarksvillensis Winchell.

A small form closely resembling *S. kentuckensis*, but with longer hinge-line.

Horizon and localities.—Lower Carboniferous, Louisiana (Kinderhook) limestone: Clarksville (Pike county).

Spiriferina spinosa (Norwood & Pratten).

Larger than *S. kentuckensis*, more robust, with shorter hinge line, higher cardinal area, and larger plications.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).
Spiriferina kentuckensis (Shumard).

Spirifer octoplicatus Hall, 1852: Stansbury’s Expd. Gt. Salt Lake, p. 409, pl. xi, figs. 4a-b (not Sowerby).

Spirifer laminosus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 45, tab. iii, figs. 19a-d. (Not McCoy.)

Spiriferina kentuckensis Meek, 1872: U. S. Geol. Sur. Nebraska, p. 185, pl. vi, figs. 3a-d, and pl. vii, figs. 11a-b.

Spiriferina kentuckensis White, 1875: Expl. and Sur. w. 100 Merid., vol. IV, p. 138, pl. x, figs. 4a-c.

Shell small, quite variable, wider than long, with a narrow and deep mesial sinus and fold, on each side of which are from four to ten simple, sharply angular ribs. Ventral valve slightly more arched than the other; beak prominent, curved; area well defined; foramen slightly higher than wide. Dorsal valve with inconspicuous beak and narrow hinge area. Surface of valves marked by numerous crowded, strongly imbricated lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City, Lexington.

Syringothyris occidentalis (Swallow).

Similar to *S. carteri*, but much smaller, and with the cardinal extremities more rounded.

Horizon and localities.—Devonian, Callaway limestone: Callaway county.

Syringothyris extenuata (Hall).

Spirifer extenuatus Hall, 1858: Geology Iowa, vol. I, p. 520, pl. vii, fig. 6.

Closely related to *S. carteri*, but smaller, with cardinal extremities more attenuated.
Horizon and localities.—Lower Carboniferous, Kinderhook limestone: Clarksville (Pike county).

Syringothyris carteri (Hall).

Plate xi, fig. 10.

Shell attaining a rather large size, very thin, nearly semi-circular, as seen in a direct view from above or below, and rhombic-subquadrangular in a front or posterior view, with length generally a little more than half the breadth, and the breadth usually about twice the height of the area; hinge-line about equaling the greatest breadth; front and lateral margins forming together a more or less nearly semi-circular curve, or with the central part of the former sometimes a little straightened, or even very faintly sinuous in outline, and the latter meeting the hinge at rather less than right angles behind. Dorsal valve moderately convex in the central region, thence sloping laterally and rounding more abruptly to the beak and anterior lateral margins than to the middle of the front; mesial fold depressed, smoothly rounded, equaling about two-thirds the breadth of the valves at the front, and sometimes showing on internal casts a faint linear mesial impression; beak small, and with the very narrow area incurved.

Ventral valve much elevated at the beak, thence sloping laterally, with slightly convex outlines, at an angle of 100° to 125°, and more abruptly to the front and anterior lateral margins; mesial sinus smoothly rounded within, rather shallow or moderately deep anteriorly, where it terminates in a short, rounded projection fitting into a corresponding sinus in the margin of the other valve; beak elevated, obtusely angular and
straight, or a little arched backward; area high, transversely and vertically striated, ranging more or less nearly at right angles to the plane of the valves, and flattened or somewhat arched backward, with its lateral margins moderately well-defined; foramen large, or about two-sevenths as wide at the hinge-line as the length of the latter, and three-fifths as wide as high, showing its deep-seated transverse septum and tube to be well developed above within.

Surface of both valves ornamented on each side of the non-costate mesial fold and sinus by about eighteen to twenty simple, depressed, rounded, radiating costæ, some five or six of which on each side of the lateral extremities of both valves are usually nearly or quite obsolete. Crossing all of these on well-preserved specimens, numerous fine concentric striae and some stronger marks of growth may be seen, and over the whole a minute pitting may be observed, so crowded and arranged as to present a delicate appearance, as seen by the aid of a magnifier. (Meek.)

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Clarksville (Pike county); Louisiana, Hannibal; Burlington limestone: Springfield.

Syringothyris plena (Hall).

Plate xi, fig. 8.

A large heavy shell, distinguished from the associated forms by its large curved area.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal.

Syringothyris texta (Hall).

Brachiopods.

Spirifer cuspidatiformis Miller, 1889: N. A. Geol. and Pal., p. 372.

Like S. carteri, but much heavier, larger and robust.

Horizon and localities.— Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).

Cyrtina dalmani? (Hall).

A small form closely related to C. acutirostris.

Horizon and localities.— Devonian, Hamilton limestone: Bailey landing (Perry county).

Cyrtina acutirostris (Shumard)

Plate xxxix, figs. 10a-b.

Shell small; area very high, nearly an equilateral triangle; greatest width at the cardinal margin. Beak of dorsal valve very slightly incurved in most specimens, sometimes straight; deltoid aperture narrow, becoming abruptly dilated near the base; lateral edges slightly elevated; the elevation most prominent at the dilated portion; mesial sinus commencing at the tip of the beak, rather deeply impressed, and destitute of ribs. Ventral valve semi-elliptical, flattened, convex; mesial ridge elevated above the general convexity of the valve, and well defined by a wide concave space on either side. Some specimens exhibit a faint longitudinal sinus running the whole length of the mesial fold. Valves with four or five simple, rounded ribs on each side of the mesial fold and sinus, crossed by the undulating subimbricating lines of growth. (Shumard.)

Horizon and localities.— Lower Carboniferous, Louisiana (Kinderhook) limestone: Louisiana, Hannibal.
Cyrtina umbonata (Hall).

Cyrtina umbonata Hall, 1858: Geology Iowa, vol. I, p. 512, pl. v, figs. 2a-e.

Similar to *C. acutirostris*, but more robust, with shorter hinge-line and lower area.

Horizon and localities.—Devonian, Callaway limestone: Callaway county (Swallow).

Amboccelia minuta White.

Shell very small, subcircular in outline, and marked by well-defined lines of growth.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Hannibal.

Athyris vittata Hall.

Plate xii, figs. 1a-b.

Shell very similar to *A. argentea*, but adult specimens are much smaller, less ventricose, and the concentric laminations much more pronounced.

Horizon and localities.—Devonian, Callaway limestone: Dauphin (Callaway county).

Careful comparisons of a large series of good specimens from Swallow’s type locality seem to show conclusively that *Spirigeria minima* is merely the young of *S. fultonensis*. And the latter appears to be, without the slightest shadow of doubt, specifically identical with the common forms so widely distributed throughout the Mississippi basin in the Devonian rocks, and so generally known under the name *Athyris vittata* of Hall.
BRACHIOPODS.

Athyris hannibalensis (Swallow).

Plate xii, fig. 9.

A rather large, lenticular form, with distant, concentric, imbricated lines of growth.

Horizon and localities. — Lower Carboniferous, Louisiana (Kinderhook) limestone: Hannibal, Louisiana, Sulphur Springs (Saint Louis county).

Athyris proutii (Swallow).

Resembling *A. vittata*, but with mesial fold more pronounced.

Horizon and localities. — Lower Carboniferous, Louisiana (Kinderhook) limestone: Hannibal, Louisiana, Clarksville (Pike county), Sulphur Springs (Saint Louis county).

Athyris incrassatus Hall.

Plate xii, fig. 10.

Athyris incrassatus Hall, 1858: Geology Iowa, vol. I, p. 600, pl. xii, fig. 6.

Shell very large, heavy, flattened, with occasional imbricated lines of growth; surface otherwise smooth.

Horizon and localities. — Lower Carboniferous, Burlington limestone: Hannibal.

Athyris formosa (Swallow).

A small form resembling closely *A. trinuclea*.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Boonville (Cooper county).
Athyris trinuclea (Hall).

Terebratula trinuclea, Hall, 1858: Geology Iowa, vol. I, p. 659, pl. xxiii, figs. 4a–c.

A very variable shell like _A. argentea_, the trilobate character being usually more pronounced than in most other forms of the group.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Barrett station (St. Louis county).

Athyris subquadrata Hall.

Athyris subquadrata Hall, 1858: Geology Iowa, vol. I, p. 703, pl. xxvii, figs. 2a–d.

A rather large, trilobate form, much like the smaller _A. trinuclea_.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).

Athyris sublamellosa Hall.

Athyris sublamellosa Hall, 1858: Geology Iowa, vol. I, p. 702, pl. xxvii, figs. 1a–c.

A large shell with prominently imbricated concentric lines of growth.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).

Athyris argentea (Shepard).

Plate xxxix, figs. 11a–d.
Terebratula subtilis Hall, 1852: Stansbury’s Exped. Gt. Salt Lake, p. 409, pl. iv, figs. 1a–b, and 2a–b.
BRACHIOPODS.

Terebratula subtilita Marcou, 1858: Geol. N. A., p. 52, pl. vi, fig. 9.
Athyrissubtilita Geinitz, 1866: Carb. und Dyas in Nebraska, p. 40, tab. III, figs. 7-9.
Athyrissubtilita Meek, 1872: U. S. Geol. Sur. Nebraska, p. 180, pl. i, fig. 12, pl. v, fig. 8, pl. viii, fig. 4.
Spirigeria subtilita White, 1885: U. S. Geol. Sur. w. 100 Merid., vol IV, p. 141, pl. x, figs. 6a-c.
Athyrissubtilita Meek, 1877: U. S. Geol. Exp. 40 Par., vol. IV, p. 83, pl. viii, figs. 6, 6a.

Shell rather small, sublenticular to subglobose. Ventral valve regularly arched and usually slightly more convex than opposite one; beak quite prominent, rounded, incurved and truncated by the circular foramen; median sinus obsolete in young specimens, but often quite prominent in older individuals. Dorsal valve convex, with a well-marked mesial fold in adult specimens; beak not prominent. Surface of valves glabrate, with occasional lines of growth, which, in large specimens, are more or less imbricated.

Horizon and localities.—Upper Carboniferous, Coal Measures: Kansas City, Lexington, Clinton (Henry county).

The name Terebratula argentea was proposed by Shepard more than half a century ago for a shell from the Coal Measures of LaSalle, Illinois, in all respects apparently identical with the form described by Hall fourteen years later. Although Shepard's diagnosis is quite brief, and his two figures rather crude,
there is but little doubt that he had one of the commonest fossils of the well-known locality just mentioned. Even if it were desirable to overlook the name applied to the LaSalle specimens, the more familiar specific title of Hall, *A. subtilita*, could not be retained, inasmuch as the same form had previously been named and figured on at least two different occasions.

Swallow has described a number of shells under Spirigera (*Athyris*) from the Coal Measures of Missouri and Kansas. With most of these it is impossible to tell much from the diagnoses given; while with others it is manifest that the writer had in hand various individuals of the very variable *Athyris argentea*, so common everywhere in the Coal Measures of the Mississippi basin.

Nucleospira pisiformis Hall.

Plate lxi, fig. 5.

Shell subglobose, valves nearly equal. Ventral valve slightly the more convex, especially toward the beak, which is somewhat elevated; area small, narrow. Surface nearly smooth, but showing lines of growth, and the bases of hair-like spines.

Horizon and localities.—Upper Silurian, Niagara limestone: Cyrene (Pike county).

Retzia? osagensis Swallow.

Like *R. vera*, but much larger and with much finer costae.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Cooper county (Swallow).
Retzia verneuiliana Hall.

Retzia verneuiliana Hall, 1858: Geology Iowa, vol. I, p. 657, pl. xxiii, figs. 4a-d.

Like *R. mormoni*, but with much finer and more numerous costae.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: St. Louis.

Retzia vera Hall.

Retzia vera Hall, 1858: Geology Iowa, vol. I, p. 704, pl. xxvii, fig. 3a.
Retzia vera, var. costata, Hall, 1858: Geology Iowa, vol. I, p. 704, pl. xxvii, figs. 3b-c.

Shell like *R. mormoni*, but very much larger, and with more numerous and finer radiating ribs.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).

Retzia mormoni (Marcou).

Plate xii, figs. 2a-c.

Terebratula mormoni Marcou, 1858: Geol. N. A., p. 51, pl. vi, fig. 11.
Retzia mormoni Geinitz, 1866: Carb. und Dyas in Nebraska, p. 39, tab. iii, fig. 6.
Retzia punctilifera Meek, 1872: U. S. Geol. Sur. Nebraska, p. 181, pl. i, fig. 13; and pl. v, fig. 7.
Retzia mormoni White, 1875: U. S. Geog. Sur. w. 100 Merid., vol. IV, p. 141, pl. x, figs. 7a-c.

Shell small, subovoid, with 12 to 16 simple, radiating costae; hinge-line short, often slightly extended into small ears. Ventral valve the more convex; beak rather prominent, rounded, somewhat curved; foramen rather large, circular; cardinal area well defined, triangular. Dorsal valve moderately
arched; beak incurved and extended but slightly beyond the hinge margin. Surface, aside from the radiating ribs, nearly smooth, marked only by a few lines of growth; under a magnifier the shell is beautifully punctate.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City, Lexington.

Considerable difference of opinion has long existed as to what name should actually be applied to the form under consideration. Two names are perhaps more prominent than any of the others, as these were both published the same year. They are the titles proposed by Shumard and by Marcou. Bearing upon this question, White seems to have found the most conclusive evidence of the priority of Marcou's term by a few months. He says: "Orthis pecosi, Retzia mormoni, Rhynchoella uta, R. rockymontana and Spirifera rockymontana were published in his Geology of North America. I have obtained satisfactory evidence that the work was published as early as March 1, 1858." Volume XV of the Bulletin de la Societe Geologique de France contains a statement that a copy of the book was sent to that society on April 20, 1858. In the same year Shumard and Swallow published a paper containing descriptions of the three first-named species, under other names, in the Transactions of the St. Louis Academy of Sciences, but that publication was not made until about the first of June. In December of the same year, Hall published in the Geological Report of Iowa, *Spirifer rockymontana* as *S. opimus*; and in 1860 McChesney published *R. rockymontana* as *R. etoniciformis*. It thus is clear that Marcou is entitled to priority of all five of the names above given.

Trematospira imbricata? (Hall).

Shell small, rhombic-suborbicular, plano-convex, or concavo-convex; length sometimes a little greater, and in other
examples somewhat less, than the breadth; cardinal margins sloping at various angles from the beaks; lateral margins more or less rounded, or obtusely subangular; front rather irregularly rounded. Dorsal valve nearly flat on each side, and more or less concave in the middle; beak not incurved. Ventral valve convex along the middle, and sloping to the sides; beak incurved a little beyond the hinge. Surface ornamented by about seven to ten rounded plications on each valve, two of which, on the middle of the ventral valve, are larger and more prominent than the others, while the middle one on the other dies out before reaching the beak. Crossing the whole are distinct, regularly arranged, imbricating lamellæ of growth.

Horizon and localities—Upper Silurian limestone: Bailey landing (Perry county).

Atrypa occidentalis Hall.

Atrypa aspera, of American authors.

Atrypa aspera, var. *occidentalis* Hall, 1858: *Geology Iowa*, vol. I, p. 515, pl. vi, figs. 3a-d.

Shell of medium size, longitudinally subovoid, inequivalve. Ventral valve flattened, somewhat convex in the umbonal region; beak small, closely incurved; foramen very minute. Dorsal valve very convex, often hemispherical; beak closely incurved. Surface marked by large, rounded folds, crossed at rather regular intervals by elevated, curved lamellae, which are often produced into short, tubular spines.

Horizon and localities.—Devonian limestone: Winfield (Lincoln county).

Atrypa reticularis (Linnaeus).

Atrypa reticularis Hall, 1858: *Geology Iowa*, vol. I, p. 515, pl. vi, figs. 4a-c and 5a-c.

Differs from *A. occidentalis* chiefly in the larger size, much finer radiating costæ, and less inbricated character of the concentric lines of growth.

Horizon and localities.—Devonian, Callaway limestone: Fulton (Callaway county).

g—8
Zygospira modesta (Say).

Zygospira modesta Meek, 1873: Geol. Sur. Ohio, Pal., vol. 1, p. 125, pl. xi, figs. 4a-d.

Shell small, rather depressed, nearly plano-convex, suborbicular, or, sometimes, a little wider than long; posterior lateral margins often slightly straightened and converging to the beaks at an obtuse angle; lateral margins more or less rounded; front rounded, or, sometimes, a little straightened, or very slightly sinuous at the middle. Dorsal valve with a rather shallow, undefined mesial sinus of moderate breadth at the front, but becoming rapidly narrower, and less impressed posteriorly, so as often to die out before reaching the umbo; surface on each side of the sinus gently convex centrally, and sloping to the lateral margins; beak but slightly prominent and incurved. Ventral valve, with a low mesial ridge, corresponding to the sinus of the other valve, excepting that it is generally most prominent near the middle, and somewhat depressed anteriorly; while on each side of the ridge the slopes are distinctly compressed; beak small, abruptly pointed, projecting beyond that of the other valve, and rather distinctly arched; but not so closely incurved as to conceal the small fissure, which seems to be closed below by a deltidium, that leaves a minute aperture above, just under, or extending to, the apex; margin on each side of beak carinated, so as to give the appearance of a kind of false cardinal area. Surface of each valve ornamented by about 16 to 18 small, simple, radiating plications, of which about three to five near the front of the dorsal valve occupy the mesial sinus, the middle one being usually a little the largest; while on the ventral valve about four of the largest occupy the mesial prominence—the furrow between the middle two being generally a little larger and deeper than the others; marks of growth undefined, or extremely minute and obscure. (Meek.)
Horizon and localities.—Lower Silurian, Trenton limestone: Saint Louis county (Hambach).

Zygospira subconcava Meek & Worthen

A somewhat smaller and more compressed species than *Z. modesta*, and having finer radiating lines.

Horizon and localities.—Upper Silurian limestone: Bailey landing (Perry county).

Camerella calcifera? Billings.

Camerella calcifera Billings, 1861: Canadian Nat. and Geol., vol. VI, p. 318.

Horizon and localities.—Silurian? Magnesian limestone: Carter county.

Rhynchonella capax (Conrad).

Plate xli, figs. 12a-b.

Shell attaining about a medium size, varying with age from compressed sub-trigonal to sub-globose, old examples being often more convex than their diameter in any other direction; posterior lateral margins somewhat straightened and converging to the beaks at about a right angle in young shells, but becoming more rounded in the adult; lateral margins rounding to the front, which is more or less distinctly sinuous, or nearly straight in the middle.

Dorsal valve generally a little more convex than the other, most prominent in the middle, and rounding abruptly, or sloping more gently from the central region in all directions; the more elevated part forming anteriorly a depressed mesial ridge that is nearly flat, and occupied by four plications on top, and rarely continues two-thirds of the way to the strongly incurved
beak; while on young or compressed individuals it is faintly marked, even anteriorly; lateral slopes each occupied by four to seven or eight simple angular plications.

Ventral valve with its beak abruptly pointed and very strongly incurved upon that of the other valve in adult shells, but less distinctly curved, and showing a small opening under its apex in young examples; mesial sinus deep and well defined in gibbous specimens, and less so in the young or more compressed forms, never quite reaching the point of the beak, and always having three simple, rather angular plications in the bottom that extend like the others to the apex of the beak in well-preserved specimens; lateral slopes each occupied by from five to seven simple plications. Entire surface of both valves marked by numerous very regular, strongly zig-zag, prominent, sublaminar marks of growth that become nearly or quite obsolete, sometimes, on old examples. Length of a medium-sized, moderately gibbous individual, 0.75 inch; breadth, 0.81 inch; convexity, 0.66 inch. (Meek.)

Horizon and localities.—Lower Silurian, Hudson shales: Louisiana, Cape Girardeau.

Rhynchonella dentata (Hall).

Plate xii, fig. 3.

Smaller and more slender than *R. capax*.

Horizon and localities.—Silurian, Hudson shales: Cape Girardeau.

Rhynchonella missouriensis Shumard.

Shell gibbous, subtriangular, beaks sharp; greatest width usually near the front, but very variable in different ages of the shell. Vertical valve much more elevated than the dorsal
BRACHIOPODS.

valve; degree of elevation varying according to the age of the shell; beak incurved, pointed; mesial ridge obscure, with from two to three obscure rounded folds, commencing a short distance in advance of the beak and becoming more prominent toward the front, where the valve is emarginate, and presents two or three deep indentations. Dorsal valve slightly convex near the beak, nearly plain anteriorly; sinus broad and shallow in young examples, becoming deeper in the more advanced ages of the shell; it has two or three wide obscure plaits, sometimes reaching the beak. Tongue of sinuses quadrangular, bent upward at right angles to the plane of the valve, and in most specimens equal in length to one-third the length of the shell. The cardinal line in sinuous. The surface of the valves is covered with very fine concentric, imbricating waved lines of growth. (Shumard).

Horizon and localities.—Lower Carboniferous, Chouteau (Upper Kinderhook) limestone: Vandever Falls (Cooper county), Providence (Boone county).

Rhynchonella cooperensis Shumard.

A form like the immature R. capax, but much broader, and larger and with more rounding, radiating costae.

Horizon and localities.—Lower Carboniferous, Chouteau (Upper Kinderhook) limestone: Providence (Boone county).

Rhynchonella boonensis Shumard.

Shell sub-triangular, length and breadth about equal; greatest width at the cardinal border, and diminishing rapidly to the front, where it terminates in an obtuse angle; cardinal border sinuous, terminating exteriorly in small salient ears; dorsal valve longitudinally convex, concave from side to side, furnished with two folds, which are very obtuse at the beak, but become rather prominently and broadly angular as they approach the front; sinus indistinct near the beak, large
and moderately deep in front; tongue of sinus triangular; beak rather obtuse, and rather strongly incurved; hinge-line sinuous, and situated some distance within the cardinal border; ventral valve shorter than dorsal valve, convex on the middle, sides nearly perpendicular; mesial fold indistinct near the beak, becoming broad and somewhat prominent in front. (Shumard.)

Horizon and localities.—Lower Carboniferous, Burlington limestone: Columbia (Boone county).

Rhynchonella ringeus Swallow.

Shell very large, heavy, triangular. Surface marked by 12 to 14 radiating ridges.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Fulton (Callaway county), Hannibal (Marion county).

Rhynchonella subtrigona Meek & Worthen.

A large, robust form like *R. cooperensis*.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Wayland (Clark county).

Rhynchonella subcuneata Hall.

Rhynchonella subcuneata Hall, 1858: *Geology Iowa*, vol. I, p. 658, pl. xxiii. figs. 3a-c.

A rather small, flattened, cuneate shell, with large plications and an obscure mesial sinus.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville (Cooper county).
Rhynchoinaella mutata Hall.

Rhynchoinaella mutata Hall, 1858: Geology Iowa, vol. I, p. 658, pl. xxiii, figs. 2a-b.

A small form like *R. subcuneata*, but smaller and less cuneate.

Horizon and localities. — Lower Carboniferous, Keokuk limestone: Boonville.

Rhynchoinaella ottumwa White.

Similar to *R. uta*, but with mesial sinus much less pronounced.

Horizon and localities. — Lower Carboniferous, Saint Louis limestone: near St. Francisville (Clark county).

Rhynchoinaella uta (Marcou).

Terebratula uta Marcou, 1858: Geol. N. A., p. 51, pl. vi, figs. 21a-c.
Camaraphoria globulina Geinitz, 1866: Carb. und Dyas in Nebraska, p. 38, tab. iii, fig. 5 (Not *C. globulina* Phillips, 1834.)
Rhynchoinaella osagensis Meek, 1872: U. S. Geol. Sur. Nebraska, p. 179, pl. i, figs. 9a-b; and pl. vi, figs. 2a-b.
Rhynchoinaella uta White, 1875: U. S. Geog. Sur. w. 100 Merid., vol. IV, p. 128, pl. ix, figs. 2a-c.

Shell small, subtrigonal in outline, slightly wider than long, more or less ventricose. Ventral valve not as convex as the other one; medial sinus short but well defined; beak pointed, not very prominent; foramen small. The median sinus is occupied by two to three sharply angular plications; and each of the lateral lobes by about three similar short ridges. Dorsal valve much more arched than the ventral; median fold rather low, not defined behind the middle of the shell, marked by two
to four plications; three or four elevations also occupy the space on each side of the medial fold; beak curved. Surface of shell smooth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City, Lexington.

Meristella laevis (Vaunexem).

Atypa laevis Vaunexem, 1843: Rept. Third Dist. N. Y., p. 120, fig. 2.

In general appearance like *Nucleospira pesiformis*, but much larger and longer.

Horizon and localities.—Upper Silurian limestone: Bailey landing (Perry county).

Eatonia peculiaris? (Conrad).

Shell rather below medium size, slightly longer than wide. Dorsal valve more convex than the ventral; front elevated into a prominent median fold. Ventral valve flattened, beak arched, foramen terminal, small. Surface ornamented by small radiating ribs.

Horizon and localities.—Upper Silurian limestone: near Grand Tower, in Perry county.

Pentamerus? salinensis Swallow.

Shell below medium size, ovoid. Ventral valve very convex, abruptly arching to the sides, beak somewhat extended, pointed, incurved; foramen large, triangular. Surface marked by about ten low plications, toward the anterior border.

Horizon and localities.—Devonian? Callaway? limestone: Moniteau county (Swallow).
Terebratula rowleyi Worthen.

Plate xii, fig. 23.

Terebratula rowleyi Worthen, 1890: Geol. Sur. Illinois, vol. VIII, p. 102, pl. xi, figs. 6a–b.

A small flattened form, with extended beak.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Louisiana.

Terebratula boidens Morton.

Terebratula boidens White, 1875: U. S. Geog. Sur. w. 100 Merid., vol. IV, p. 144, pl. xi, figs. 10a–c.

Shell of medium size, ovoid. Ventral valve strongly arched, with the greatest convexity toward the apical portion; beak rather prominent, closely incurved; foramen elliptic; median sinus wide and quite shallow. Dorsal valve but slightly convex longitudinally, moderately arcuate transversely; mesial fold scarcely noticeable. Surface glabrate, with a few rather distinct concentric lines of growth, but under a magnifier exhibiting a punctate structure.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Terebratula parva Swallow.

Shell very small, gibbous. Surface nearly smooth, or marked by fine radiating lines.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Keokuk (Iowa).
Spurious and Doubtful Species of Brachiopods.

CHAPTER XII.

LAMELLIBRANCHS.

Placunopsis carbonaria Meek & Worthen.

Plate xiii, fig. 9

Lenticular, compressed, shell very thin.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Lima retifera Shumard.

Plate xiii, fig. 1.

Lima retifera Geinitz, 1866: Carb. und Dyas in Nebraska, p. 36, tab. ii, figs. 20, 21.

Lima retifera Meek, 1872: U.S. Geol. Sur. Nebraska, p. 188, pl. ix, fig. 5.

Crenipecten retiferus Miller, 1890: N. A. Geol. and Pal., p. 473.

Shell rather small, subovate, moderately convex, regularly rounded below; anterior slope long, straight, forming an angle of about 140° with the hinge-line, sharply curved as it meets the ventral margin; posterior slope much shorter; hinge-line about one-third the length of the valves; ears subequal; um-bones not prominent, and situated midway between the extremities of the hinge-line. Surface marked by from 20 to 25 rather angular radiating ribs, which are often crossed by transverse lines of growth.

Horizon and localities.—Upper Carboniferous, Coal Measures: Clinton (Henry county), Kansas City.
Entolium circulus (Shumard).

Avicula circulus Hall, 1858: Geology Iowa, vol. I, p. 522, pl. vii, fig. 9.

Large, compressed, circular; hinge very short; surface smooth or marked by fine lines of growth.

Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Vandever Falls (Cooper county).

Entolium cooperensis (Shumard).

A small form somewhat resembling *E. circulus*, but with shorter hinge-line, and with distinct radiating ribs.

Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Vandever Falls (Cooper county).

Entolium aviculatum (Swallow).

Plate xlii, figs. 2a-b.

Shell compressed, very thin, equi-valve, subcircular in outline, with small subequal ears; anterior and posterior slopes straight, equally inclined to the hinge-line, and forming at the beak an angle of about 120° with each other; hinge-line short. A shallow depression extends from the umbones to the front and back margins of each valve. Surface ornamented by minute concentric lines, which are often crossed by faint radiating striations.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Aviculopecten magna (Swallow).
Plate xlii, fig. 7.

Shell very large, heavy, subcircular in outline; anterior and ventral margins regularly rounded; hinge-line straight, long, nearly equaling the length of the valves. Left valve quite convex, especially toward the umbo; beak gibbous, extending slightly beyond the hinge-line; posterior ear short; anterior ear greatly extended. Surface marked by rather large, rounded costæ radiating from the beak, and widely separated from one another; these are crossed by lines of growth, often somewhat imbricated.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Springfield (Greene county).

Aviculopecten missouriensis (Shumard).

A small form similar to A. occidentalis, but having relatively larger ribs.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Aviculopecten occidentalis (Shumard).

Plate xiii, fig. 3.

Pecten missouriensis ? Geinitz, 1866: Carb und Dyas in Nebraska, p. 35, tab. ii, fig. 18. (Not Shumard, 1855.)

Shell of medium size, inequivalve, symmetrical, higher than long, regularly rounded below; hinge-line as long as the greatest length of valves. Left valve decidedly convex; other one
nearly flat. Ears subequal; the anterior somewhat smaller than the posterior, and with much more conspicuous radiating costae. Surface marked by low radiating ribs, of which there are about fifteen, that extend from the umbo to the margins, the others disappearing as they approach the beaks. These are crossed by numerous fine, often imbricated, lines of growth. All the surface markings are much more prominent on the left valve than on the right.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Plattsburg (Clinton county), Kansas City.

Aviculopecten carboniferus (Stevens).

Pecten hawini Geinitz, 1866: *Carb. und Dyas in Nebraska*, p. 36, tab. ii, figs. 19a-b.

Shell rather small, oblique, moderately convex, length and breadth nearly equal; hinge-line nearly or quite straight, and somewhat less in length than the greatest breadth of the valves, provided with a marginal ridge in both valves; basal margin regularly rounded. Left valve more convex than the other; posterior ear rather well defined from the swell of the umbo, somewhat extended and terminating in an acute point, separated from the margin below by deep rounded sinus; anterior ear about two-thirds as long as the other, and rather more distinct from the umbo and more obtuse, but still rather acutely angular; defined by a moderately distinct subangular sinuses. Right valve nearly flat, or distinctly less convex than the other; its anterior ear narrow, and defined by a deep, rather sharp sinus; posterior ear of the same size and form as in the left valve. Surface ornamented in the left valve with about fifteen or sixteen distinct, angular, radiating plications, separated by furrows of the same size, each one of which terminates
112 LAMELLIBRANCHS.

at the free border in a little spine-like projection with curved-up margin; lines of growth fine on the body of the valve, but becoming more distinct and irregular on the ears, where there are rarely any defined radiating costae. At a few distantly separated intervals there are prominent imbricating laminae of growth, showing the same digitate markings as the free borders of the shell. In the right valve the surface markings are somewhat like those of the other valve, but much more obscure, excepting on the anterior wing, where there are a few more distinct radiating costae. (Meek.)

Horizon and localities—Upper Carboniferous, Upper Coal Measures: Kansas City.

Aviculopecten coxanus Meek & Worthen.

Shell like *A. occidentalis* Shumard, but very much smaller, thinner, and proportionally longer; ribs larger and further apart; posterior slope considerably longer than the anterior.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Aviculopecten? interlineatus Meek & Worthen.

Plate xlii, fig. 6.

A small subcircular form, with long straight hinge-line; and characterized especially by prominent, rather distant concentric ridges.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
LAMELLIBRANCHS.

Aviculopecten coryanus White.

Aviculopecten coryanus White, 1877: U. S. Geog. Sur. w. 100 Merid., vol. IV, p. 147, pl. xi, figs. 1a-b.

Like *A. occidentalis*, but much larger, less contracted below the ears, and with coarser radiating ribs.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Aviculopecten fasciculatus Keyes.

Plate xiii, fig. 7.

Shell large, similar to *A. providensis* (Cox). The ribs small, in bundles of from three to four, with broad channels between contiguous fascicles.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Avicula longa (Geinitz).

Gervillia longa Geinitz, 1866: Carb. und Dyas in Nebraska, p. 32, tab. ii, fig. 15.

Shell rather below medium size, obliquely elongate, nearly equinvalve, with a long posterior ear and a much shorter front extension. Anterior end rather acutely pointed above, sloping sinuously backward to the nearly straight basal margin; posterior extremity sharply rounded below. Hinge-margin straight, about two-thirds the length of the valves, and extended behind into a long narrow wing, producing a deep, rounded sinus between it and the body of the shell. Forward ear broad, somewhat triangular. Beaks rather prominent, situated about one-fourth of the entire length of the hinge-line from the forward end of the shell. Surface glabrate, with often fine concentric lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

G—9
Monopteria gibbosa (Meek & Worthen),
Plate xiii, figs. 2a-b.

Shell suborbicular in outline, gibbous, regularly curved along the anterior and basal margins; posterior margin produced backward, the umbonal ridge extending from the beak to this rounded angularity. Hinge-line straight, somewhat shorter than greatest length of valves, the posterior alate projection rather long, slender, compressed, with a deep sinus below, separating it from the values beneath. Anterior ear very small. Surface marked only by fine concentric lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Monopteria longispina (Cox).
Plate xiii, fig. 1.

Like _M. gibbosa_, but very much more oblique, the posterior angle much more produced, the beaks placed more forward.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Monotis? gregaria Meek & Worthen.

A very small, thin, rounded shell, like _Aviculopecten_, but without the ears defined.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Enchondria neglecta (Geinitz)

Pecten neglectus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 56, tab. iii, fig. 7.

A small form like an Entolium in general appearance, but with large ribbed ears, and crenulated cardinal margin.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Aviculopecten americana Meek.

Avicula pinnoformis Geinitz, 1866: Carb. und Dyas in Nebraska, p. 31, tab. ii, fig. 13. (Not *A. pinnoformis*, Geinitz, 1857.)

Shell small, compressed, with the slender elongated form of some of the Carboniferous species of Pinna; cardinal and ventral margins generally nearly straight (the latter being the more convex in outline) and converging gradually from behind to the rather obtusely pointed anterior extremity; posterior side truncated, rounding to the base, and intersecting the posterior extremity of the hinge very nearly at right angles; a little sinuous just below the extremity of the hinge. Cardinal margin so slightly convex in outline as to appear quite straight, very nearly equaling the greatest length of the valves, and provided with a well-defined marginal ridge, which narrows to a mere line, or dies out before reaching the beaks, and widens very gradually to the posterior extremity. Beaks nearly or quite obsolete, extremely oblique, and very slightly behind the very narrow, obtusely pointed anterior extremity. Surface with two or three broad, nearly obsolete radiating ridges on the posterior dorsal region, and ornamented by numerous slender, very regularly disposed and abruptly elevated lines of lamellae, much narrower than the space between and curving gracefully
parallel to the posterior border; while on the basal half of the valves they are closely approximate and curve forward.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Forest City (Holt county).

Pinna missouriensis Swallow.

A rather large shell with radiating ridges on the posterior slopes.

Pinna peracuta Shumard.

Pinna peracuta Meek, 1872: *U. S. Geog. and Geol. Sur. Nebraska*, p. 198, pl. vi, figs. 11a-b.

Shell attaining a large size, very convex or somewhat cylindrical, flattened behind; hinge-line straight; ventral margin nearly straight; posterior rounded. Surface smooth, or marked only by lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Lithophaga sp?

Plate xiii, figs. 8a-b.

Shell moderately long, very ventricose, compressed and sharply rounded posteriorly; hinge-line straight, about two-thirds as long as the valves; beaks obtuse, terminal. Surface marked only by closely arranged lines of growth.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Louisiana.
Lithophaga pertenuis Meek & Worthen.

Much larger and less robust than the species figured; surface smooth, with only fine lines of growth.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Myalina keokuk Worthen.

Like *M. angulata*, but with stout beaks and heavier valves.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Bonaparte (Iowa); St. Francisville (Clark county).

Myalina sancti-ludovici Worthen.

Closely related to *M. angulata*, but much smaller and more delicate.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Myalina kansasensis Shumard.

Plate xliii, fig. 5.

Closely related to *M. recurvirostris* M. & W., but with the concentric lamellae prominently corrugated.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Myalina recurvirostris Meek & Worthen.

Plate xlv, figs. 1a-b.

Similar to *M. swallowi* but inequivalve, very much larger, heavier, and with the beaks incurved; surface with somewhat imbricated lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Myalina perattenuata *Meek & Hayden.*

Shell rather small, with sharp, protruding beaks, and broadly rounded posterior margin.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Myalina angulata *Meek & Worthen.*

Shell quite large, with extended, compressed beaks, and subalate dorsum.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).

Myalina subquadrata *Shumard.*

Plate xlv, figs. 1a-b and 2a-b.

Myalina subquadrata Geinitz, 1866: Carb. und Dyas in Nebraska, p. 27, tab. iii, figs. 25-26.

Shell large, massive, oblong, somewhat higher than long, winged above the posterior umbonal slope. Hinge-line straight, as long as the greatest length of valves; below regularly curved; anterior border somewhat concave above; posterior margin nearly straight, vertical. Beaks terminal. Cardinal
area broad with well-defined furrows. Surface marked by fine concentric lines of growth and imbricated lamellæ.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Myalina swallovi McChesney.

Plate xliii, figs. 3a-c.

Ancella hausmanni Geinitz, 1866: Carb und Dyas in Nebraska, p. 25, tab. ii, fig. 8. (Not Goldfuss, 1834.)

Shell rather small, nearly or quite equiva!lve, modioliform or mytiloid, convex, or even subangular, along the umbonal slopes from the beaks to the anterior basal margin; posterior and postero-dorsal regions cuneate; cardinal border nearly straight, and about one-half the length of the valves, passing almost imperceptibly, or without any angularity, into the posterior margin, which rounds down with a semicircular curve to the narrowly rounded basal extremity; antero-basal border ascending obliquely forward, more or less sinuous near the middle, or sometimes a little above, usually swelling out into a kind of lobe or protuberance above the middle in front of the umbonal slope. This prominence sometimes extends a little beyond the beaks and varies more or less in breadth. Beaks small, very oblique, not projecting beyond the cardinal margin, and located so near the anterior extremity as often to appear very nearly terminal. Surface rather smooth, but showing fine concentric lines, which in well-preserved specimens are sometimes crossed by very fine, obscure traces of radiating stria-tions that curve upward on the posterior dorsal region. (Meek.)

Horizon and localities—Upper Carboniferous, Lower Coal Measures: Carbonier (Saint Louis county); Upper Coal Measures: Richmond (Ray county), Kansas City.
Macrodon tenuistriatus Meek & Worthen.

Arca striata Gelnitz, 1866: Carb. und Dyas in Nebraska, p. 20, tab. 1, fig. 32. (Not _Mytilites striatus_, Schlotheim, 1819.)

Shell small, rhombic oblong, rather distinctly convex, along the umbonal slopes, and near the front a little more than twice as long as high; basal and cardinal margins parallel; the former nearly straight, or somewhat sinuous near the middle; cardinal margin straight, not quite equaling the greatest antero-posterior diameter; anterior side rounding up from below so as to meet the hinge nearly at right angles; posterior basal margin narrowly rounded; posterior margin obliquely truncated, often a little sinuous above; dorsal region behind the umbonal slope compressed; beaks convex, a little flattened, incurved, and rising somewhat above the hinge margin, located about half-way between the middle and the front; flanks broadly impressed or concave from the umbonal regions obliquely backward to the faintly sinuous part of the base; cardinal area unknown; posterior linear teeth about three; surface ornamented with distinct marks of growth crossed by radiating markings, which on the compressed posterior dorsal region form rather well-defined radiating lines; anteriorly, however, these diminish in size so as to become very minute or scarcely visible, crowded, obsolescent striae. (Meek.)

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Macrodon obsoletus Meek.

Plate xiv, fig. 1.

Shell considerably larger than _M. tenuistriatus_, and with the radiating lines poorly defined or absent.
Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

The bivalve under consideration was originally described from the Appalachian region, where it appears to be rather widely distributed through Pennsylvania, West Virginia and Ohio. It has only recently been recognized west of the Mississippi river. The western shells are somewhat larger than those from the eastern localities, but do not differ essentially from the typical forms of the genus. Meek’s type specimen was a good example, showing the specific characters perfectly.

Macrodon sangamonensis? Worthen.
Plate xlvii, fig. 2.

Similar to M. obsoletus, but smaller, and with radiating ribs.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Nucula parva McChesney.

A very small shell, differing from N. ventricosa, not only in size, but in the long, posterior slope, and marked concentric lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Nucula ventricosa Hall.

Plats xlv, figs. 3a-b.

Nucula ventricosa Hall, 1858: Geology Iowa, vol. I, p. 716, pl. xxix, figs. 4, 5a-b.
Nucula ventricosa Meek, 1872: U. S. Geol. Sur. Nebraska, p. 204, pl. x, figs. 17a-e.
Nucula ventricosa White, 1882: Geol. Sur. Indiana, Rept. for 1881, p. 371, pl. xiii, figs. 9, 10.
Nucula ventricosa White, 1884: Geol. Sur. Indiana, Rept. for 1883, p. 146, pl. xxvii, figs. 9, 10.

Shell rather small, thick, subovoid, with the greatest breadth slightly in front of the middle; anterior margin short, straight, or a little concave, rather sharply rounded below; posterior end but slightly produced, somewhat narrowly rounded; basal margin broadly and regularly curved. Beaks well defined, and situated a little in front of the middle of the valves. Surface nearly smooth, with a few lines of growth plainly discernible.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Clinton (Henry county); Upper Coal Measures: Kansas City, Gentry (Gentry county).

Nuculana bellistriata Stevens.

Plate xiv, figs. 4a-b.

Leda bellistriata Hall, 1858: Geology Iowa, vol. I, p. 717, pl. xxix, figs. 6a-d.

Nucula kazanensis Geinitz, 1866: Carb. und Dyas in Nebraska, p. 20, tab. i, figs. 33-34 (Not N. kazanensis de Verneuil, 1845.)
Nuculana bellistriata, var. attenuata Meek, 1872: U. S. Geol. Sur. Nebraska, p. 206, pl. x, figs. 11a-b.

Shell rather small, subovoid, extended behind; umbonal regions more or less ventricose, compressed posteriorly, with the umbonal slope quite angular; regularly rounded below and in front, attenuated behind. Cardinal border in front of the beaks arched; behind concave, a little elevated or ridged, leaving the umbonal slope more or less depressed in the middle. Beaks rather prominent. Surface marked by numerous well-defined concentric thread-like ribs, which are scarcely noticeable after passing the prominent umbonal carina.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Gentry (Gentry county), Kansas City.
Yoldia subscitula (Meek & Hayden).

Yoldia subscitula Meek & Hayden, 1864: Pal. Upper Missouri, pt. i, p. 60, pl. ii, figs. 4a-b.

Nucula (Leda) subscitula? Geinitz, 1866: Carb. und Dyas in Nebraska, p. 22, tab. i, fig. 35.

A small, smooth shell, not unlike a N. bellistriata in general appearance, but without the attenuated posterior margin, and with crenate hinge.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Schizodus wheeleri (Swallow).
Plate xlvi, figs. 3a-c.
Schizodus obscurus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 20, tab. i, figs. 30, 31. (Not Sowerby, 1821.)
Schizodus wheeleri Meek, 1872: U. S. Geol. Sur. Nebraska, p. 203, pl. x, figs. 1a-d.

Shell of medium size, longitudinally subovoid, moderately ventricose; regularly curved in front; narrow and obliquely truncated behind; evenly rounded below; cardinal border straight, inclined slightly backward. Beaks not prominent, situated midway between the anterior and middle of the valves; posterior umbonal slope rather well marked by a low rounded ridge. Surface smooth, marked only by faint lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Schizodus harii Miller.
Plate xlvi, fig. 4.
Larger, shorter and heavier than S. wheeleri.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Schizodus? curtus Meek & Worthen.

Schizodus rossicus Geinitz, 1866: Carb. und Dynas in Nebraska, p. 18, tab. i, fig. 28. (Not S. rossicus de Verneuil.)

A small suborbicular form, with nearly smooth surface.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Chonocardium sp.?

A small form of this genus has been found in the "white chert" layers near the base of the Burlington limestone, at Louisiana. The specimens are not now accessible.

Conocardium parrishi Worthen.

Plate xlvi, figs. 6a-b.

Shell trigonal, cardinal line straight; umbonal ridge sloping forward. Surface costate.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Clinopistha radiata (Hall).

Plate xlvi, figs. 11a-b.

Edmondia radiata Hall, 1858: Geology Iowa, vol. I, p. 716, pl. xxix, fig. 3.

Shell subovate in outline, moderately convex; beaks blunt; cardinal margin straight, slightly curved downward posteriorly. Surface glabrate, often with obscure radiating lines.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Clinton (Henry county).
Pleurophorus oblongus Meek.

Pleurophorus pallasi Geinitz, 1866: Carb. und Dyas in Nebraska, p. 23, tab. ii, fig. 4. (In part.)

Shell small, longitudinally oblong, about twice as long as high, moderately convex, particularly along the umbonal slopes from the beaks to the posterior basal margin, but without any defined angle or ridge there; cardinal margin nearly straight, and subparallel to the base, about equaling two-thirds the entire length of the valves; basal margin more or less distinctly sinuous near the middle, at the termination of a broad, oblique impression or concavity, extending from the anterior side of the beaks, under the umbonal slopes, to the lower margin; anterior margin narrowly rounded below; posterior side much wider, rounded, or sometimes obliquely subtruncated above; beaks convex, very oblique, obtuse, located one-seventh to one-eighth the length of the valves behind the anterior extremity; surface with apparently only fine concentric marks of growth; muscular impressions faintly marked; ridge behind the anterior one small; posterior lateral tooth slender and elongated.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Astartella vera Hall.

Plate xlv, fig. 6.

Astartella vera Hall, 1858: Geology Iowa, vol. I, p. 715, pl. xxix, figs. 3a-c.

Shell subquadrate, with beaks somewhat elevated, situated over the anterior margin, which is regularly rounded; posterior margin truncated. Surface smooth, with concentric wrinkles and fine lines of growth; cardinal teeth stout.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Clinton (Henry county).
Astartella concentrica (McChesney).

Horizon and localities—Upper Carboniferous, Lower Coal Measures: Charbonier (Saint Louis county).

Edmondia nuptialis Winchell.

Plate xlvii, fig. 2.

A rather small form, circular in outline, with the beaks rather well forward.

Horizon and localities.—Lower Carboniferous, Lower Burlington limestone: Louisiana.

Edmondia burlingtonensis White & Whitfield.

Plate xlvii, fig. 3.

Rather below medium size, elliptic in outline; hinge-line long, nearly straight; beaks set well toward the anterior end.

Horizon and localities.—Lower Carboniferous, Lower Burlington limestone: Louisiana.

Edmondia aspinwallensis Meek.

Plate xlvii, figs. 1a-b.

Shell subovate, moderately ventricose; cardinal margin nearly straight, slightly curving downward posteriorly; beaks somewhat depressed, incurved, and situated toward the anterior. Surface smooth, with low, undulatory, concentric folds, and fine lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Edmondia subtruncata Meek.

Closely approaching *E. aspinwallensis*, but more subquadrate in outline, and with the umbonal region more inflated.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Edmondia glabra Meek.

Quite small, with large beaks medially located.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Allorisma hannibalensis Shumard.

Closely resembling *A. subcuneata*, but very much smaller, and with prominent, concentric carinæ at broad intervals.

Horizon and localities.—Lower Carboniferous, Louisiana (Lithographic) limestone: Hannibal.

Allorisma marionensis White.

A miniature of *A. subcuneata*.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Allorisma antiqua Swallow.

A small form with prominent concentric wrinkles.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Ste. Genevieve.
Allorisma costata **Meek & Worthen**.

Plate xlvi, fig. 12.

Shell small, elongate, length from two to three times the height; thin, convex in the umbonal regions; anterior margin short, evenly rounded; posterior end compressed, truncated. Surface ornamented by sharp, distant concentric ridges, which extend backward to the well-defined umbonal carinae.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Allorisma topekaensis (**Shumard**).

Very closely related to *A. granosum*, and perhaps identical with that species.

Horizon and localities.—Lower Carboniferous, Upper Coal Measures: Kansas City.

Allorisma granosum (**Shumard**).

Shell very thin; approaching an irregularly oblong form, the length being less than twice the height; very convex, the most gibbous part being near the middle of the valves; beaks prominent, incurved, somewhat flattened on the outside, and placed about half way between the middle and the front. Dorsal margin straight behind the beaks and nearly parallel to the general outline of the base, inflected so as to form a distinct, flattened, lanceolate, lunule-like area, bounded on each side by a well-defined, sub-angular ridge; posterior side nearly or quite closed, obliquely truncated, with sometimes a faint sinuosity near the middle; anterior side rather abruptly sloping forward, straightened above, and rounding into the base below,
near which it seems to be a little gaping; base somewhat
straightened, or even a little sinuous in outline, just in front of
the middle, at the termination of a broad, very shallow con­
cavity extending obliquely downward and backward from the
umbonal region; behind this rather prominent, thence ascend­
ing obliquely, with a slightly convex outline, to the truncated
posterior margin. Posterior umbonal slopes very prominently
rounded above, and continued as a low, undefined ridge, ob­
liquely backward and downward; posterior dorsal slope, above
the umbonal ridge, with an oblique, shallow, rounded sulcus,
extending from the back part of the beaks to the middle of the
truncated margin behind. Surface marked with fine lines of
growth and small, irregular, concentric wrinkles, which latter
are not defined on the posterior dorsal region above the um­
bonal ridge; crossing these are the usual radiating rows of
minute granules. (Meek.)

Horizon and localities.—Upper Carboniferous, Upper Coal
Measures: Kansas City.

Allorisma subcuneatum Meek & Hayden.

Allorisma subcuneatum Meek & Hayden, 1858: Proc. Acad. Nat. Sci.,
Phila., p. 263.
Allorisma ensiformis Swallow, 1863: Trans. St. Louis Acad. Sci., vol. I,
p. 656.
Allorisma subcuneatum Meek & Hayden, 1864: Pal. Upper Mo., p. 37,
pl. i, figs. 10a-b.
Allorisma subcuneatum Geinitz, 1866: Carlb. und Dyas in Nebraska, p. 76.
ii, figs. 13a-b.

Shell large, two or three times as long as high, with greatest
breadth in front of the middle, gaping slightly behind. Upper
border nearly straight, flattened immediately behind the
beaks so as to form a long lanceolate area, with subangular
margins; between these angularities and the low, scarcely de­

G—10

Allorisma subcuneatum Meek & Hayden.
ward. Surface marked only by low concentric folds and fine lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Solenopsis solenoides (Geinitz).

Clidophorus solenoides Geinitz, 1866: Carb. und Dyas in Nebraska, p. 25, tab. ii, fig. 7.

Solenopsis solenoides Meek, 1872: U. S. Geol. Sur Nebraska, p. 223, pl. x, fig. 3.

Shell small, rather compressed, elongated, the length being about four times the height, narrowing posteriorly; cardinal margin nearly straight, erect, less than the entire length of the valves, with a faint external compression or shallow furrow just below it; basal margin broadly convex in outline, the most prominent part being in advance of the middle; beaks much depressed and compressed, or scarcely distinct from the cardinal margin, placed within about one-eighth the entire length of the shell from the anterior extremity, and defined in front by a short vertical indentation; anterior side narrowly rounded, or with the upper side sometimes faintly truncated, with a slight slope from the little indentation forward. Surface with fine, regular striae of growth, which are nearly or quite obsolete, excepting on the lower half of the valves.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Chænomya minnehaha (Swallow).

Chænomya minnehaha Meek & Hayden, 1864: Pal. Upper Mo., p. 43.

Shell of medium size, obliquely elliptic in outline, ventricose; anterior border rather sharply rounded above; posterior margin truncated, narrowly curved below, gaping broadly; cardinal border curved. Beaks rather prominent, depressed, somewhat incurved, and well forward. Posterior umbonal slopes prominent.
La Mel Libranchs

Horizon and localities — Upper Carboniferous, Upper Coal Measures: Kansas City.

Chænomya leavenworthensis (Meek & Hayden).

Chænomya leavenworthensis Meek, 1861: Pal. Upper Missouri, p. 43, pl. ii, figs. 1a–c.

Chænomya leavenworthensis Meek, 1872: U. S. Geol. Nebraska, p. 216, pl. ii, fig. 9.

Somewhat smaller than *C. minnehaha*, and having the beaks set farther back than in that species.

Horizon and localities. — Upper Carboniferous, Upper Coal Measures: Kansas City.

Cardiomorpha triangulata Swallow.

Somewhat larger than *C. missouriensis*, and more triangular in outline.

Horizon and localities. — Lower Carboniferous, Chouteau (Kinderhook) limestone: Cooper county.

Cardiomorpha missouriensis Shumard.

Shell small, like an *Allorisma* in general appearance, but having larger umbal regions.

Horizon and localities. — Upper Carboniferous, Lower Coal Measures: Charboniere (St. Louis county), Lexington (Lafayette county).

Spurious and Doubtful Species.

CHAPTER XIII.

GASTEROPODS.

Dentalium primarium Hall.

Dentalium primarium Hall, 1858: *Geology Iowa*, vol. I, p. 666, pl. xxxii, fig. 16.

Shell large, stout, nearly straight; surface smooth.

Horizon and localities — Lower Carboniferous, Keokuk limestone: Warsaw (Illinois).

Dentalium missouriense Swallow.

Shell rather large, thin, slightly curved, and marked with small longitudinal ribs.

Dentalium meekianum Geinitz.

Dentalium meekianum Geinitz, 1866: *Carb. und Dyas in Nebraska*, p. 13, t. 1, fig. 20.

Shell rather small, curved, subcylindrical, ornamented by numerous fine oblique lines.

Horizon and localities — Upper Carboniferous, Upper Coal Measures: Kansas City.

In the Carboniferous rocks of the Mississippi basin, four distinct types of *Dentalium* are recognized. The first has the surface ornamentation composed of a series of ridges trans-
verse to the axis of the shell, forming well-defined annulations, as in *D. annulostriatum* Meek & Worthen. The second has the costæ much less prominent, and arranged obliquely or spirally, as in the species under consideration. A third type has the ridges running longitudinally, as is rather imperfectly shown in *D. sublaxe* Hall; and as is well seen in the type of the genus *D. elephantinum* Linnaeus. The fourth variety has a perfectly smooth surface, as in *D. venustum* Meek & Worthen.

Pleurotomaria sedaliensis Mill er.

Horizon and localities.—Lower Carboniferous, Kinderhook limestone: Sedalia.

Pleurotomaria lens (Hall).

Shell of medium size, lenticular, like *P. illinoiensis* in general shape, but with the spire slightly more elevated. Volutions about four in number, the last sharply rounded around the periphery; convex below.

Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Moniteau county.

Pleurotomaria montezuma Worthen

Shell very large, turbinate; apical portions considerably elevated. Volutions about four in number, rapidly increasing in size toward the aperture; the upper ones strongly convex, the last more or less flattened above and below, forming a rather well-marked angularity around the periphery. Aperture obliquely ovate. Surface ornamented by prominent, revolving carinae, of which seven or eight traverse the whorls above the
GASTEROPODS.

periphery, and from twelve to fifteen below; the spaces between the ridges are shallow and regularly concave from crest to crest; crossing these are numerous fine undulating lines of growth.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal.

Worthen’s original description of this shell was based upon a very imperfect specimen, and was unaccompanied by illustrations of any kind; and it was not until more than eight years afterward that suitable figures of the form appeared. Were not the shell such a striking species, so different and so easily distinguished from all other forms of the genus, it would hardly be regarded as unjust to ignore altogether, the name given by Worthen.

Pleurotomaria subcarbonaria sp. nov.
Plate xlix, fig. 2.

Shell small, closely resembling an immature specimen of *P. carbonaria*.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Louisiana (Pike county); Kinderhook beds: Burlington (Iowa).

Pleurotomaria turbiniformis Meek & Worthen.
Plate xlvii, figs 6a-b.

Shell rather above medium size, top-shaped, about as high as wide; spire occupying less than half the height; whorls five to six in number, sharply angular around the periphery, obliquely flattened above, slightly convex below, and curving gently into the small umbilicus; band very narrow; aperture obliquely subquadrate; surface marked by strong transverse
lines on the upper side of the whorls, crossed by about twenty longitudinal lines; band bordered on each side by a sharp ridge; lower half of whorls ornamented only by obscure revolving lines and lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Pleurotomaria subscalaris Meek & Worthen.

Closely resembling *P. tabulata*, differing apparently chiefly in the absence of the crenulated periphery.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Meek & Worthen's type specimen was considerably water-worn or eroded, and consequently the apical parts and the sharp peripheral edge is rounded somewhat. The form may be, therefore, an old individual of *P. tabulata*, with the sharp outlines and crenulations obliterated.

Pleurotomaria missouriensis (Swallow).

Plate xlviii, fig. 3a-b.

Shell very large, trochiform, with highly ornamented surface.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Pleurotomaria coxana Meek & Worthen.

Shell very large, obliquely conical, much longer than wide; spire occupying over half the length. Whorls about seven in number, obtusely angular at the periphery, obliquely flattened
above, broadly rounded below; peripheral margin elevated above the suture, which is strongly defined; umbilicus small. Aperture large, subquadrate. Surface smooth, marked by small regular lines of growth.

Horizon and localities—Upper Carboniferous, Upper Coal Measures: Kansas City.

Pleurotomaria valvatiformis Meek & Worthen.

Shell very small, about twice as wide as long. Whorls about four in number, rather rapidly increasing in size; very regularly convex; suture deep; umbilicus minute; aperture circular in outline, flattened somewhat on the inner side; surface marked by fine revolving lines.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

The form under consideration is the smallest of the group yet observed in the Mississippi basin. The species has a much wider geographic distribution than has hitherto been suspected, but owing to its small size has usually escaped observation. It has been reported from Macoupin county, Illinois, and from Polk county, Iowa.

Pleurotomaria speciosa Meek & Worthen.

Shell rather below medium size, conical, about as long as broad. Whorls about seven in number, the last as long as the spire, obliquely flattened above and angular toward the top; periphery sharp, convex below, with a very obtuse angularity passing around the middle; suture deep. Aperture subquadrate. Surface marked by filiform revolving lines, about
six of which occupy the area above the peripheral band, two or three; the median flattened area, about twelve the underside; the peripheral band is also crenulated. These are crossed by fine lines parallel to the striations of growth, every fourth one of which is much stronger than the others.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Pleurotomaria coniformis Worthen.

Shell quite small, conical, somewhat higher than wide. Whorls five in number, obliquely flattened parallel to the slope of the spire, the lower margins projecting a little beyond the upper edges of the succeeding volutions, angular at the periphery, flattened below, and rapidly curving toward the center into a small umbilicus. Aperture rhombic in outline; inner margin nearly straight and parallel to the axis of the shell below, abruptly turning outward at the base. Peripheral band rather narrow, bordered on each side by a small sharp ridge, which passes around the spire just above the suture. Surface marked on the upper half of the whorls by small, oblique, slightly curving lines, which on the lower side are less prominent, and resemble lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Pleurotomaria carbonaria Norwood & Pratten.

Shell of medium size, subglobose; whorls five to six in number, regularly rounded. Aperture subcircular. Surface ornamented by twenty to thirty sharp, revolving carinae, with broadly rounded, concave furrows between; these are crossed by fine, sharply defined lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

The original specimens of this species are from Williamson county, Illinois. A very similar form has been described from Newport, Indiana, under the name *P. newportensis*. Apparently the only difference ascribed is that it has the revolving band raised instead of depressed. Further comparisons may show, eventually, this character varietal rather than specific. This suggestion seems all the more plausible since many individuals which are unquestionably *P. carbonaria* have the band scarcely sunk below the general surface. The various examples of the species under discussion vary considerably in height; and Miller’s recently described *P. harii* is merely one of the more depressed phases.

Pleurotomaria illinoisensis **Worthen.**

Pleurotomaria kentuckensis Miller, 1890: *N. A. Geol. and Pal.*, p. 421.

Shell small, lenticular; spire greatly depressed; volutions about six in number, obliquely flattened above; body-whorl large, rapidly increasing in size, sharply angular on the periphery, flattened or even slightly concave above, broadly rounded below; suture very slightly impressed; peripheral band not well defined, and on the spire still more obscured by a single series of prominent nodes; aperture subquadrate; umbilicate region slightly impressed, but not perforated; surface glabrate, but showing fine lines of growth under a magnifying
glass. A series of small transverse folds or wrinkles is quite conspicuous toward the inner margin of the outer whorl; each fold appears to originate at a distinct node, and extends about one-half to two-thirds the distance to the periphery.

Horizon and localities.—Upper Carboniferous, Coal Measures: Clinton (Henry county), Knob Noster (Johnson county), Kansas City.

The species under consideration is widely distributed through the Lower Coal Measures of the continental interior, having been first recognized in 1857, by Cox, who figured it as *Pleurotomaria depressa*. This term had been used, however, previously. Nothing more was heard of the shell for more than thirty years, when it was found in the vicinity of Des Moines, Iowa, and renamed *P. modesta*, inasmuch as Cox's name had been pre-occupied. Two years later, Miller rechristened the form *Pleurotomaria kentuckyensis*. In the meanwhile Worthen reported a shell from Mercer county, Illinois, under the name of *P. illinoensis*, giving at the same time a very meager description and no figures. Finally, in 1891 the eighth volume of the Illinois survey appeared, in which was given a figure of Worthen's shell, leaving but little doubt that it is identical with the form first noted by Cox.

Pleurotomaria perhumerosa Meek.

Plate xlvii, fig. 5.

Shell of medium size; volutions four to six in number, expanding moderately from the apex; the body-whorl somewhat produced below; all the turns with a pronounced revolving angularity, above which is a rather broad, flattened area sloping outward and downward from the suture. Suture well marked. Aperture rather large, oval, with two angularities above. Surface glabrate, with fine lines of growth, and often a few low, rounded elevations running parallel to the angularity near the periphery.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
GASTEROPODS.

Pleurotomaria sphærulata Conrad.

Pleurotomaria coronula Hall, 1852: Stanbury’s Exped. Gt. Salt Lake, p. 413, pl. iv, figs. 4f, 6a–d.

Shell of medium size, subturbinate; spire more or less depressed, with nearly straight sides; volutions about six in number, rather sharply rounded at the periphery; outer lip with a broad and deep notch. Surface glabrate, except along the suture, where there is a single row of rather conspicuous tubercles; a few indistinct lines of growth are also often discernible.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Pleurotomaria grayvillensis Norwood & Pratten.

Pleurotomaria grayvillensis Geinitz, 1866: Carb. und Dyas in Nebraska, p. 9, tab. 1, fig. 9.

Shell rather small, conical, subovate, longer than wide; spire moderately elevated; volutions five to seven, obliquely flattened above. Body-whorl large, rapidly increasing in size, rounded below; biangular around the periphery, both angles being visible on the spire. Aperture subrhombic; outer margin sharp. Columella somewhat extended below. Surface ornamented by from 25 to 40 revolving lines, of which 20 or more occupy the inferior surface of the last turn; some of the
lines much more pronounced than others, and a more or less regular alternation of the more prominent ones with the secondary raised striae; these are crossed by numerous regular lines of growth, giving a more or less tuberculate character, which is most conspicuous toward the suture.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Kansas City, Pleasant Hill (Cass county).

Pleurotomaria tabulata (Conrad).

Shell rather above medium size, subconical, with the spire considerably elevated; volutions eight in number, sharply angular around the periphery, which is finely crenulated; from this prominent median carina, the outer surface is straight, or slightly concave, to the suture above and below; suture well defined; umbilicus closed; columellar lip but slightly thickened. Aperture subcircular, flattened posteriorly, and quite angular on each side; outer lip distinctly notched. Surface ornamented by numerous fine, revolving, very narrow ridges; these are crossed by lines of growth, which abruptly bend at the peripheral angle.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Pleurotomaria brazoensis Shumard.

Plate xlviii, figs. 2a–b.

Shell rather small, trochiform; spire occupying about one-half the entire length. Whorls six in number, obliquely flat-
tended above; very slightly convex below, with a prominent bicarinate peripheral prominence. On the apical portions only the upper of the two carinae is elevated above the sutural line, near which is a thickened, subangular, more or less obscurely nodose ridge. Aperture somewhat rhombic in shape. Surface marked by a score or more of minute, filiform, revolving lines, of which twelve to fourteen are anterior to the peripheral edge; these are crossed by small transverse costæ.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Clinton (Henry county).

The specimens examined do not present much variation. The two peripheral carinae are nearly equal, and between them is located the concave band of the sinus. The whorls are ornamented by sixteen or seventeen straight, filiform lines, nine below the lower carina, upon which there are two thread-like elevations; three above the upper carina, upon which there are two or three lines, and a single line on the sinal band. Crossing the small revolving ridges are numerous well-marked equidistant transverse lines, which give to the whole ornamentation a characteristic cancellated appearance. Between, and parallel to, these transverse raised striae are also from three to six microscopic, yet sharp and distinct raised striae.

Meek and Worthen refer, with a query, to Shumard's species, a form from Macoupin county, Illinois, having about twenty-five revolving lines (twelve of which occupy the lower side of the body-whorl), instead of thirteen or fourteen, as ascribed by Shumard to this species. Shumard says: “Surface of volutions ornamented with from thirteen to fourteen rather strong filiform striae, which are crossed by sharp transverse striae.” If by this he intends to convey the idea that this is the entire number of lines, including those on the under side of the body-whorl, Meek and Worthen remark that they “should scarcely entertain a doubt in regard to our [their] shell being a distinct species, since it uniformly has about double that number of revolving striae on the last whorl.”
Pleurotomaria monilifera \(\text{(White)} \).

Shell rather below medium in size, subglobose; spire short, blunt; whorls five to six in number, the last very large; last two volutions with a prominent row of rounded tubercles along the sutural lines; surface otherwise smooth and polished. Aperture subovate; inner lip callous; outer one thin, with a somewhat bending margin.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Pleasant Hill, Kansas City.

It is quite manifest, after an examination of the type specimen, that the shell described by White as *Naticopsis monilifera* does not properly belong to *Naticopsis* as now understood. And although the peripheral band has not as yet been made out with absolute certainty, it seems very probable that this form actually is a member of one of the sections of *Pleurotomaria*, along with *P. sphaerulata* and others.

Pleurotomaria broadheadi \(\text{White} \).

Shell large, sub-globose; spire elevated, occupying nearly half the length; volutions six or seven, the last comparatively large; peripheral band quite narrow and obscure. Aperture somewhat ovate, slightly angular anteriorly: inner lip thin; outer labrum curved. Surface ornamented by 35 to 40 depressed revolving lines.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City, Clinton (Henry county).
GASTEROPODS.

Murchisonia melaniaformis Shumard.
Plate xlix, fig. 3.

Shell rather small, slender, composed of about ten whorls, which are gently convex; suture moderately impressed. Aperture subovate, slightly angular behind, surface smooth.

Horizon and localities — Cambrian limestone: Moselle (Franklin county).

Murchisonia major Hall.
Plate xlix, figs. 5a-b.

Murchisonia bellicincta Owen, 1852: Geol. Sur. Wisconsin, Iowa and Minnesota, tab. ii, fig. 8. (Not Hall, 1847.)

Shell large, robust, terete; volutions eight to ten in number, strongly convex, with the suture deeply impressed. Aperture subovate. Surface smooth in Missouri specimens.

Horizon and localities.—Lower Silurian, Trenton limestone: McCune (Pike county).

While there is no doubt as to the identity of this form as found in Missouri, and the shells long ago found by Owen in northeastern Iowa, it is not at all likely that any of these specimens are the same which Hall described from New York under the name of *M. bellicincta*.

Murchisonia carinifera Shumard.

Murchisonia bicineta Hall, 1847: Pal. New York, vol. I, p. 177, pl. xxxviii, figs. 5a-b. (Not McCoy, 1841.)
Murchisonia milleri Hall, 1877: Miller's Pal. Foss., p. 244.

Shell of medium size, somewhat conical, spire rather short; volutions four to six in number, with a prominent median carina, below which is a second more or less obscure angularity; above and below the peripheral elevation the whorls are con-

G-11
siderably flattened; suture rather deeply impressed; aperture subcircular, and somewhat angular in front.

Horizon and localities.—Lower Silurian, Trenton limestone: Glencoe (St. Louis county).

This shell, usually found through the continental interior, occurs as natural internal casts. In both the shell and the cast the secondary revolving angularity, a short distance below the periphery, is frequently not apparent; in other individuals it is barely noticeable, but in the majority of specimens it is more or less well marked.

There is scarcely any hesitancy in referring Hall's forms and the specimens described by Shumard as *M. carinifera* to one and the same species. Unfortunately Hall's name was pre-occupied by McCoy, in 1844, and it becomes necessary to adopt Shumard's term for this shell, though Hall, in 1871, re-christened the species. The specimens used by Shumard in his description were, in all probability, natural casts; yet the Missouri localities also furnish well-preserved shells, showing all the structural characters.

Murchisonia gracilis Hall.

Shell small, very slender, with evenly rounded whorls. Surface smooth, showing only the peripheral band and fine lines of growth.

Horizon and localities.—Silurian, Trenton limestone: McCune station (Pike county).

Murchisonia terebra White.

Plate xlix, fig. 4.

Shell very long and slender; whorls numerous, angulated around the periphery.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Bellerophon bilobatus? Sowerby.

Plate II, fig. 2.

Bellerophon bilobatus Sowerby, 1839: Murchison's Sil. Syst., p. 643.

Shell of medium size, rather rapidly expanding to the aperture.

Horizon and localities.—Lower Silurian, Trenton limestone: Glencoe (St. Louis county).

Bellerophon panneus White.

Plate I, fig. 6.

Shell globose, composed of about four volutions, all of which are visible in the rather small, very deep umbilici; periphery somewhat flattened, with a very prominent longitudinal carina; the surface marked by sharp, equidistant costae passing transversely across the whorls from the large median ridge; transverse elevations somewhat undulating and irregular, and bending forward slightly as they leave the central prominence; finer lines of growth are also visible between the costae.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Burlington (Iowa); apparently fragments also of this species from Hannibal.

Bellerophon bilabiatus White & Whitfield.

Plate I, fig. 3.

The deeply and broadly emarginate lip, the nearly glabrate surface and a sharp, narrow, median carina readily distinguish this form from the associated species of the genus.

Horizon and localities.—Lower Carboniferous, Kinderhook group: Chouteau Springs; Burlington limestone: Louisiana.
Bellerophon sublævis Hall.

Bellerophon sublævis Hall, 1858: Geology Iowa, vol. I, p. 666, pl. xxiii, figs. 15a–c.

Shell rather small, globose, gradually and regularly expanding to the aperture; umbilicus closed. Aperture transversely reniform, sinus moderately deep; outer lip thin toward the middle, greatly thickened at the sides; inner lip but slightly developed. Surface marked only by fine, even lines of growth.

Horizon and localities—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Bellerophon bellus _Sp. Nov._

Plate I, fig. 7.

Shell subglobose, expanding rapidly at the aperture, which is somewhat reniform, with the lip reflected at the sides. Surface marked by a rather prominent, longitudinal carina along the median portion of the shell; strong transverse ridges parallel to the lines of growth pass from one umbilical region to the other; these are crossed by less prominent longitudinal lines, the two sets forming a beautiful cancellated area.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Bellerophon marcouanus Geinitz.

Plate II, fig. 3.

Bellerophon marcouanus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 7, tab. i, fig. 12.
Bellerophon marcouanus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 226, pl. iv, fig. 17; and pl. xi, figs. 13a–b.

Shell much like _B. montfortianus_, with broadly expanded aperture; but the numerous filiform, longitudinal ridges are
not interrupted by transverse elevations or nodes, and the fine lines are very uniform in size.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Bellerophon meekianus Swallow.

Shell rather small, broadly rounded on the dorsum, with a well-defined angularity toward the aperture; the latter transversely reniform; outer lip thin medially, much thickened toward the umbilical axis on either side, and more or less reflected. Surface marked by numerous crowded filiform lines; those running longitudinally the more prominent.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Lexington, and in Howard county.

Bellerophon urii Fleming.

Plate I, figs. 5a-c.

Bellerophon urii de Koninck, 1844: *Descriptions des Animaux Fossiles (de Belgique)*, p. 356, pl. xxx, fig. 4.

Bellerophon carbonarius Geinitz, 1866: *Carb. und Dyas in Nebraska*, p. 6, tab. 1, fig. 8.

Bellerophon carbonarius Meek, 1872: *U. S. Geol. Sur. Nebraska*, p. 224, pl. iv, fig. 16; and pl. xi, figs. 11a-c.

Shell of medium size, globose, dorsum broadly rounded; umbilici closed; aperture transversely semilunate, but not expanding much more rapidly than the uniform enlargement of the volutions; inner lip but slightly developed; outer lip thickened and rounded toward the umbilici, but becoming very attenuated medially; its central sinus rather broad, rounded and not very deep. Medial band obscure on the costate portion of the shell, but on the terminal half of the body whorl more or less distinct, and in some specimens bordered on each side by a low, narrow, yet well-defined ridge. Surface, except the last half of the outer whorl, ornamented with from 16 to 30 or more sharp, simple, nearly parallel costae; terminal half of the body whorl generally glabrate, except along the medial portion, which is often marked by lines of growth, and sometimes by two longitudinal angularities. Often the greater part of the smooth area is covered with small but well-defined tubercles.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

The form considered here under the name of *Bellerophon urii* is the one usually designated by American palaeontologists as *B. carbonarius*. A careful comparison of the descriptions and figures of the various writers on this group of Gasteropods, and of a large series of specimens fails to furnish any valid reasons for separating specifically the American form from the European shell described by Fleming in 1828 as *Bellerophon urii*. Norwood and Pratten correctly referred the specimens collected by Cox in Kentucky to *B. urii*; but Cox in 1857 made them the types of a species which he called *B. carbonarius*, distinguishing it from the European form by the slight lateral expansion of the mouth, and particularly by the less number of revolving costae, which in *B. carbonarius* were said to vary from nineteen to twenty-five, while, according to de Koninck, *B. urii* had from thirty-six to thirty-eight. Though de Koninck does make this latter statement in his earlier work, his later Recherches state that the number varies from twenty-two to thirty. McCchesney, in the description of his *B. blaneyanus*, seems also to have made the chief distinctive character
between his species and the European representative, the possession by the former of only sixteen ribs, or about half the number ascribed to _B. urii_ by de Koninck.

Bellerophon crassus Meek & Worthen.

Plate 1, figs. 1a-b.

Bellerophon crassus White, 1875: Expl and Sur. w. 100 merid., vol. IV, p. 157, pl. xii, fig. 1a.

Shell very large, massive, subglobose, whorls rather rapidly increasing in size; umbilicus depressed, but not perforated; medial band narrow, well defined and bordered on each side by a well-marked ridge. Aperture transversely reniform, or sublunate; outer lip greatly thickened toward the umbilical region, much thinner centrally on each side of the rather narrow sinus; callosity of the inner labrum thick. Surface unmarked except by lines of growth and irregular wrinkles.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City, Lexington.

Bellerophon montfortianus Norwood & Pratten.

Bellerophon montfortianus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 8, tab. 1, fig. 13.

Bellerophon interlineatus Geinitz, 1866: Carb. und Dyas in Nebraska, p. 9, tab. 1, fig. 14. (Not Portlock, 1843.)

Bellerophon montfortianus White, 1876: Geol. Uinta Mts., p. 92.

Shell with inner whorls small, outer one broadly expanded; band narrow, well defined and slightly elevated in the center of a rather deep, longitudinal depression; umbilicus closed. Aperture ample, transversely reniform; outer lip very thin medially, but becoming greatly thickened toward the umbilical parts; sinus moderately deep; inner labrum callous. Surface marked by fine raised longitudinal lines, about every fourth one of which is much more prominent than the others; these are crossed by many minute striations parallel to the lines of growth. With the exception of the expanded portion of the shell, the volutions are also ornamented by large nodose ridges extending from the median depression to the umbilicus on each side.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Bellerophon stevensianus McCheSney.

Shell small, somewhat compressed, gradually expanding; band rather narrow, forming a prominent medial ridge, which is bordered on each side by a slight depression; aperture somewhat semilunate; outer lip thin, much thickened toward the umbilical regions. Surface marked by prominent lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Bellerophon nodocarinatus Hall.

Plate I, figs. 4a-c.

Bellerophon nodocarinatus Hall, 1858: Geology Iowa, vol I, p. 725, pl. xxix, figs. 15a-c.
GASTEROPods.

Shell rather large, heavy, subglobose, only slightly expanded toward the aperture; volutions regularly rounded, the last with three low, broad, longitudinal folds, which are often more or less nodose. Surface, excepting the last half of the body whorl, marked by narrow, rather well-defined longitudinal ridges.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Bellerophon percarinatus Conrad.

Plate I, figs. 2a-f.

Shell of medium size, subglobose, broadly expanded toward the aperture; umbilicus closed; outer lip thin medially, much thickened at the sides; callous portions of the inner labrum quite thick. Last whorl marked by large transverse folds or wrinkles, each of which has a prominent nodosity in the middle, the entire series resembling a prominent median ridge. On each side of the central nodose elevation is another series of more or less conspicuous nodes, giving to the shell a distinct tricarinate aspect. The surface is otherwise ornamented only by lines of growth, which not unfrequently are somewhat imbricated.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Porcellia nodosa Hall.
Plate ii, fig. 4.

Shell large, thin. Whorls about four in number, closely united, circular in cross-section, with a dozen or more large nodes on each side of the median plane; dorsal cleft narrow, deep. Surface marked by fine, regular transverse lines, which are crossed by less prominent longitudinal ones.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Louisiana (Pike county).

Cyclonema bilix (Conrad).
Cyclonema bilix Meek, 1873: Geol. Sur. Ohio, Pal., vol. I, p. 151, pl. xiii, figs. 5a, c, d, g.

Shell variable in form, subglobose to subconoid. Volututions about five in number, increasing rapidly in size, moderately convex, with a decided tendency to flattening on the upper side, parallel to the general slope of the spire—the last volution being rather sharply rounded; suture well defined. Aperture broadly oval or subquadrature; inner lip thickened; outer lip thin, short. Surface marked by revolving lines, which are crossed by oblique lines parallel to the lines of growth.

Horizon and localities—Lower Silurian, Trenton limestone: McCune (Pike county).

Anomphalus rotulus Meek & Worthen.
Shell very small, depressed, spire scarcely elevated above body whorl; volutions about four in number, moderately convex above and below, but sharply rounded at the periphery, slightly turned inward in the umbilical region; suture linear, not impressed; aperture transversely suboval, somewhat flattened on the inner side below. Surface glabrate.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Clinton (Henry county).

Trochonema umbilicata (Hall).

Shell subconical, wider than high; whorls about three in number, with four revolving annulations; aperture obovate. Surface smooth, or with lines of growth moderately prominent.

Horizon and localities.—Lower Silurian, Trenton limestone: Pike county.

Genus Straparollus Montfort.

The generic relations of Straparollus and Euomphalus have long been a subject of controversy. And, while the question cannot at present be regarded as definitely settled, the evidence derived from all available sources points to the co extension of the two genera. The two terms are of common occurrence in the literature of American Palæontology, and have been applied indifferently both to planorbiform gasteropod shells having angulated whorls, and those possessing rounded volutions. The latter features were originally regarded as distinctive. Yet the multiplicity of forms manifestly belonging to the group founded by Montfort, has given rise to the establishment of a number of genera which can now be considered only as of little or no utility, and seem best disposed of when placed in the synonymy of this genus. Aside from the two leading sections, however, these various terms require no further reference here. Each name was primarily proposed for a
group seemingly quite distinct. But later inquiry has indicated that the alleged generic distinctions are actually more apparent than real; and that the two sections can, with great propriety, be considered under a single term. Some recent writers have even proposed to make the two genera in question identical with Solarium, established by Lamarck for a group of modern gasteropods. But it does not appear feasible, nor advisable, to extend the limits of the Lamarckian genus, as they suggested; while practically the separation of the recent and ancient forms is not difficult, and, as a matter of fact, is very convenient to the systematist.

Straparollus, as defined by Montfort, has for its type *S. dionysii* Mont.—a form with the spire somewhat elevated, the umbilicus broad and shallow, and the whorls regularly rounded. Euomphalus of Sowerby, represented by *E. pentangularis* Sow., includes planorbiform shells, having more or less distinctly angulated volutions. With the types alone under consideration, the two groups might appear sufficiently well marked to warrant their generic separation. A more extended comparison, however, of the described species reveals no reliable criteria by which the two groups may be distinguished. A further consideration of these resemblances and differences of divers individuals shows that they are so variable, and that the gradations are so complete, that the generic limitations heretofore usually assigned are clearly untenable.

Briefly stated, the general characters of Straparollus are: Shell rather thick, planorbiform, or depressed conical, broadly and often deeply umbilicated; whorls angular or rounded, usually closely coiled, but often barely in contact; aperture sharply pentagonal to sub-circular; labrum generally sharp. The surface of the volutions is for the most part smooth, or showing only numerous lines of growth; but sometimes with one or more distinct longitudinal carinæ.

In the majority of cases the carinæ or angular prominences on the whorls of certain Straparolli appear to be simply thickenings of the shell at those points. The internal transverse section is circular, as shown when the shell is removed from
the matrix forming the cast of the inside. Some species have a thickened shell, with the whorls barely in contact, or even separated toward the aperture. In instances of this kind the internal casts have much the appearance of some of the forms for which Sowerby established the genus Phanerotinus. But with the latter have evidently been included a number of evo­lute Straparolli.

Straparollus valvataformis Shumard.

Plate II, fig. 8.

Shell small, closely resembling *S. spergenensis*.

Horizon and localities. — Cambrian limestone: Ozark county.

Straparollus obtusus (*Hall*).

Plate II, fig. 5.

Straparollus obtusus Keyes, 1890: *American Geologist*, vol. V, p. 197, pl. 1, figs. 2a–c.

Shell large, planorbiform, composed of five to six regularly rounded volutions; spire on a level with, or slightly below, the upper surface of the last whorl; suture very deeply impressed; upper surface of the volutions very slightly flattened on the inner side near the suture; umbilical region very broad and shallow; aperture circular.

Horizon and localities. — Lower Carboniferous, Lower Burlington limestone: Louisiana (Pike county), Hannibal.

This form was the first of the group recognized in the Kinderhook rocks along the Mississippi river, and is one of the most characteristic gasteropods of this horizon at Burlington (Iowa), and elsewhere. At the latter place it occurs in the oolitic layer a few feet below the Burlington limestone, and is easily distinguished from all the congeneric species of the locality by its large size—often attaining a diametric measurement of more than six centimeters—its greatly depressed spire,
broad, shallow umbilicus and regularly rounded whorls. In many examples of this species the volutions are barely in contact with one another, and in a few instances the outer whorl, toward the aperture, has actually become separated from the adjoining inner turns. This fact is of special interest as illustrating the first noticeable departure toward certain evolute Straparolli, which have been referred to Phanerotinus of Sowerby.

Straparollus ammon (White & Whitfield).

Plate II, fig. 6.

Shell small, with rounded whorls, spiral portions raised but little above the plane of the body volution. Surface smooth, with numerous fine lines of growth.

Horizon and localities.—Lower Carboniferous, Lower Burlington limestone: Louisiana (Pike county).

Straparollus latus (Hall).

Plate II, fig. 9.
Euomphalus latus Hall, 1858: Geology Iowa, vol. I, p. 605, pl. xxii, figs. 7a–b.

Shell rather large, discoid, composed of four to five rather rapidly enlarging volutions, plane above; spire nearly on a level with the upper surface of the outer whorl; suture impressed; deeply and broadly umbilicate; aperture nearly circular, flattened above. The broad flattened area occupying the upper surface of the volutions is bordered on each side by a distinct carina, the inner being near the sutural line. Below the outer ridge are sometimes two scarcely perceptible angularities, one around the periphery and the other along the mid-
dle of the whorls below. The latter, as shown in young specimens, is often well defined, but after the shell has become half grown, the obtuse prominence becomes obscured. In some specimens the ridge above the periphery is so pronounced as to leave a narrow concave area immediately beneath.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Springfield (Greene county), Ash Grove (Greene county), Osceola (St. Clair county), Louisiana, Hannibal.

Straparollus latus is the most characteristic form of the genus occurring in the Burlington, but it is not very common. It attains a maximum diameter of eight centimeters.

Straparollus spergenensis (Hall).

Shell small, depressed conical, composed of four to six rounded volutions, which are more or less flattened above, near the suture; broadly umbilicated; suture well defined. Aperture oblique, circular; lip sharp. Surface marked only by numerous, closely arranged, fine lines of growth.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Considerable variation in shape is observable among the shells of this species. Many show quite a marked flattening of the apical portions, while others have the spire more or less elevated, and in this respect closely simulating the type of the genus S. dionysii Montfort.
Straparollus planidorsatus Meek & Worthen.

Shell rather below medium size, planorbiform; spire a little elevated; whorls four or five in number, flattened above, with a well-defined angularity toward the peripheral margin; regularly rounded below, though often a slight revolving prominence is also discernible; suture rather deeply impressed; umbilicus broad and rather deep; aperture nearly circular; surface smooth, with occasional lines of growth.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).

Straparollus catilloides (Conrad).

Euomphalus rugosus Hall, 1858: Geology Iowa, vol. I, p. 723, pl. xxix, fig. 14. (Not Sowerby, 1812.)
Serpula (Spiorbis) planorbites Geinitz, 1866: Carb. und Dys in Nebraska, p. 3, tab. i, fig. 6. (Not Munster.)
Straparollus (Euomphalus) rugosus Meek, 1872: U. S. Geol. Sur. Nebraska, p. 290, pl. vi, figs. 5-6; and pl. xi, figs. 4a-b.

Shell small, planorbiform, concave above and below; whorls five in number, increasing gradually in size, obliquely flattened on the periphery, which is bordered on each side by a narrow rounded ridge, and on the upper and lower sides. Aperture trapeziform outside, circular inside. Surface smooth, but often strongly marked by lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Atchison, Kansas City.
There appears to be but little doubt that the form described by Conrad from the region east of the Appalachians as *Inachus catilloides*, and *Euomphalus rugosus* of Hall, are identical. Although Conrad's original description is brief, his figure shows clearly the kind of a shell he had under consideration. A careful comparison of a large series of Pennsylvania specimens and those forms from the Mississippi basin, fails to bring out any differences sufficiently marked to warrant a specific separation of the shells of the two districts. The form is generally known throughout the continental interior under Hall's name. That designation, however, was preoccupied by Sowerby in 1812, and for this reason Meek and Worthen proposed *subrugosus* for the specific title. After all, it is very probable that the form should more properly be regarded as identical with a certain European species; and further comparison may require the mergence of the two species now regarded as valid. *S. catilloides*, as now understood, is widely distributed geographically, and is one of the most abundant and characteristic shells of the Coal Measures of the Mississippi basin. It often attains a very considerable size, though, as a rule, its maximum measurement is not greater than ten or twelve millimeters.

Straparollus pernodosus Meek & Worthen.

Shell rather large, planorbiform, with the spire on a level with the upper edge of the body-whorl; volutions five or six in number, flattened above, rounded below, with a well-defined row of large nodes disappearing toward the aperture; the upper peripheral margin has a prominent carina, from which the surface slopes inward to the suture; umbilicus broad, moderately deep, showing all the inner whorls. Surface marked by con-
spicuous, often imbricated lines of growth and frequently also by broad, transverse wrinkles.

Horizon and localities. — Upper Carboniferous, Upper Coal Measures: Kansas City.

Straparollus subquadratus Meek & Worthen.

Shell similar to *S. catilloides*, but very much larger, with the nodes and transverse wrinkles very much more pronounced.

Horizon and localities. — Upper Carboniferous, Upper Coal Measures: Kansas City.

Omphalotrochus springvalensis (White).

Plate II, fig. 7.

Shell large, conical, about as high as wide. Whorls about six in number, flattened slightly above, regularly rounded below. Aperture sub-circular in outline. Surface smooth.

Horizon and localities. — Lower Carboniferous, Lower Burlington limestone: Louisiana (Pike county).

Ophileta compacta Salter.

Ophileta compacta Salter, 1859: Canadian Org. Rem., Decade 1, p. 16, pl. iii, figs. 1-3.

Shell discoid, composed of six or more volutions, obliquely flattened above. Surface marked by oblique, sigmoid lines.

Horizon and localities — Cambrian limestone: Washington county.
GASTEROPODS.

Raphistoma subplana Shumard.

Shell depressed, turbinate; width rather more than one-third the height; whorls about four, periphery of last one sharply angular, inner edge obtusely angulated; upper surface subplane, with a shallow groove just within the exterior margin; under surface convex; umbilicus small; aperture transverse, subtrigonal. Width 4½ lines, height 3 lines. (Shumard.)

Horizon and localities. — Cambrian limestone: Ozark county.

Raphistoma lenticularis (Conrad).

Pleurotomaria lenticularis Owen, 1844: Geol. Expl. Iowa, Wisc. and Ill., p. 86, pl. xviii, fig. 6.

Shell lenticular, the breadth being about twice the height, nearly equally convex above and below; whorls four to five in number, flattened above, sharply carinate around the periphery, and rather convex below; suture not well defined; umbilicus broad; aperture rhomboidal in outline. Surface unknown in Missouri specimens.

Horizon and localities — Lower Silurian, Trenton limestone: McCune (Pike county).

Maclurea magna (Le Sueur).

Plate iii, figs. 9a-b.

Shell rather large, composed of three or more volutions, rapidly increasing in size; flattened above, rounded and carinated below. Surface marked only by lines of growth.
Horizon and localities.—Silurian, Trenton limestone: Glencoe, McCune station (Pike county), Allerton (St. Louis county), Bailey landing (Perry county).

Phanerotinus paradoxus Winchell.

Plate iii, fig. 7.

Shell rather small, planorbiform; volutions not contiguous, about four in number, very gradually enlarging to the aperture, which is circular. Surface smooth, with indistinct lines of growth.

Horizon and localities. — Lower Carboniferous, Lower Burlington limestone: Louisiana (Pike county).

Genus Capulus Montfort.

Until quite recently there has always been a considerable diversity of opinion as to what term should be really applied to the Paleozoic group of gastropodous shells commonly referred, by most American writers, to *Platyceras* of Conrad. The described species of this group have been variously and indifferently assigned to *Capulus*, Montfort, *Pileopsis*, Lamarck, *Actita*, *Fisher von Waldheim*, *Platyceras*, *Conrad*, *Aeroeculia*, *Phillips*, *Orthonychia*, Hall, and some other genera. Of these, *Capulus* and *Platyceras* have become at last generally adopted, the former having preference with most European and the latter with the majority of American authors.

The two genera last mentioned are practically co-extensive, and since the first has precedence—of more than thirty years—it should be used instead of the second. Even if the group to which Conrad gave the name *Platyceras* were a valid one, it is very questionable whether the term could stand, inasmuch as it has been pre-occupied for three-quarters of a century. It has long been known that Geoffrey in 1764 proposed for a genus of Coleoptera the name *Platyceras*, a term which was later employed by Latreille, and which continues to the present
day in good usage as originally proposed. Taking advantage of this fact, Ehlert has recently revived Phillips' name Acroculia for the Platyceras group of shells; but this of course cannot be adopted.

The leading characters of generic value in modern Capulus, as shown by the more typical shells, as *C. hungaricus* Linnaeus, are the obliquely conical shape, the small, often closely incurved or coiled spire, the broad campanulate apertural portions, and the peculiar horseshoe-shaped muscular impressions. In the Paleozoic forms heretofore referred to Platyceras, these features have been made out most clearly in *C. paralius* (W. & W.) and *C. equilateralis* (Hall); though the affinities are not less striking in many other species.

There is often considerable embarrassment in attempting to separate certain Paleozoic Capuli, on the one hand from some forms of Platystoma, especially from those species in which there is a greater or less tendency for the shells to uncoil; and on the other hand, from various genera of Patelloid shells. As might be expected in a group of gastropods presenting so few constant characters which may be satisfactorily relied upon as classificatory criteria, it is often impossible to clearly distinguish between certain of these species.

Among the first to notice the existence of Carboniferous Capuli in the continental interior were Yandell and Shumard, who called attention to the association of a species with an Acrocrinus (afterward described by the former author as *A. shumardi*). *Orthonychia acutirostre*, however, was the first species of this group of gastropods described from the Carboniferous rocks of the Mississippi basin; and was so denominated by Hall in 1856. The publication of this diagnosis was followed in quick succession by definitions of other forms by Stevens, Hall, Swallow, McChesney, Winchell, White and Whitfield, and Meek and Worthen.

Variation in Form.—It has been noted frequently in the descriptions of various Paleozoic species of Capulus, that the shells often present a more or less well-defined quinquelobate appearance, and that the apertural margins are for the most
part sinuous or crenate. In the absence of salient classificatory characters these features were regarded usually of much importance for specific distinction. It was not until a comparatively recent date that their true significance was indicated. The fact here referred to is the attachment of fossil Capuli to foreign bodies, and particularly to the calyces of crinoids. The observations on this habit of the ancient Capuli have been fully considered elsewhere, but may be here briefly summarized by stating that in all the examples examined—upward of several hundreds—(1) the gasteropod shell invariably lies over the anal opening of the crinoid; (2) the mollusk remained in this position for a considerable period, probably for the greater part of life, as is shown by the shells on highly-ornamented calyces, and by the removal of them from their places of attachment, and tracing the growth of the shell by the concentric grooves made on the ventral plates; (3) the growing shell followed closely the inequalities of the surface upon which it rested—depressions giving rise to furrows and protuberances to folds or nodes; and (4) shells simply lying on flat surfaces are much more depressed and proportionally broader than those clinging to the vertical or inclined portions of calyces where the anal opening is situated laterally. The third of these statements is perhaps best illustrated by crinoids having low interradial areas and elevated radial regions; and this is the probable explanation of the frequent occurrence of the more or less distinctly five-lobed calyptraean shells. Heretofore this phenomenon has admitted of no direct causal interpretation.

Attachment to Crinoids.—The adherence of gasteropods of the genus under consideration to fossil crinoids was at first thought to furnish conclusive evidence of the carnivorous habits of the Crinoidea; and inasmuch as it was at that time considered that the aperture in the vault was the mouth, this explanation seemed very plausible. Consequently, the conclusion was very naturally reached that the crinoid, when it perished, was in the act of devouring the mollusk. Meek and Worthen appear to be the first to question the prevalent opinions regarding the intimate association of crinoid and gastero-
GASTEROPODS.

pod; and to suggest that the mollusk was, in all probability, stationed on the echinoderm for a protracted period, perhaps even for the greater portion of its life. But notwithstanding the fact that the univalve was almost invariably situated over the ventral aperture, and that this opening was recognized as the anus, these writers do not seem to entertain for a moment the idea that the gasteropod may have been nourished upon the refuse matter from the crinoid. The latter view is now favorably received by most paleontologists. In every instance of the several hundred specimens lately examined, the calyptræan covers the anal opening of the crinoid; and, so far as observable, it is always the anterior portion of the molluscan shell that is directed to the vault aperture. In those examples where the shell has been removed, its impression made on the ventral surface shows that the anterior margin of the peristome was at the edge of the opening in the dome, a position that would have brought the mouth of the mollusk directly over the anus of the crinoid. From an examination of the concentric markings made by molluscan shells on the tests of Strotocrinus and Platycrinus, it appears that the forward end of the Capulus was always stationary at the margin of the dome opening; and that, as the growth of the shell continued, the posterior portion was removed farther and farther from the ventral aperture of the crinoid.

The food of recent crinoids consists chiefly of animalcules and microscopic plants, and the living Calyptææae subsists on food of a similar nature. From analogy it might be inferred that the food of fossil crinoids and mollusks must have been similar to that of their modern representatives. So far as the echinoderms are concerned, there seem to be no serious objections to this inference. But with the univalves their position through life indicates that their sustenance was, in great part at least, of a somewhat different character.

The anatomy of the crinoid and the position of the molluscan shell are not in accord with the supposition that the calyptræan may in any way have been nourished on the food of the crinoid. This would imply that the gasteropod was par-
asitic in its habits—a view which, though held by most writers, does not appear to be structurally substantiated. While no doubt the Capulus derived the greater part of its food from excrementitious matter, nourishment from other sources may also have been obtained, and in all probability it was very similar to that of the crinoids and the living Calyptraeidae. Furthermore, there does not seem to be the slightest indication that the crinoid was in any manner inconvenienced by the attachment of the gasteropod, except, perhaps, in a few cases where the molluscan shell had encircled the posterio-lateral arms, which were in consequence slightly pressed outward. The only really noticeable effect of the presence of Capulus on the crinoid is a comparatively shallow depression or groove on some of the ventral plates, marking the position of the shell lip; though in the majority of specimens even this feature is not well pronounced. There are no grounds for the view advanced by Trautschold in regard to *Cromyocrinus simplex* Trauts. and its adhering *Capulus parasiticus* Trauts. from the Lower Carboniferous of Russia, that the crinoid built a cylindrical process upon the anal plate as a protection against the sedentary gasteropod.

Illustrative Examples.—In some crinoids, as *Gilbertsocrinus*, the plates of the vault are more or less convex or nodose. This nodosity of the ventral plates reaches a high development in such forms as *G. tuberosus* Lyon and Casseday. Nearly one-half of the known individuals of this species have a gasteropod adhering. The specimens illustrate well the adaptation of the apertural margin of the shell to the irregularities of the crinoidal surface; for it is clearly observable, as first pointed out by Meek and Worthen, that the contact of the gasteropod shell and crinoid is not the result of accidental pressure, but that the mollusk adhered to the surface of the crinoid for a considerable period, as is shown by the sinuosities of the peristome corresponding exactly to the inequalities of the surface beneath. In young shells the sinuosities of the apertural margin are comparatively much more pronounced than in older individuals. Many of the latter exhibit much irregularity in
the lines of growth, which might at first appear to be due to a change of station, but closer inspection shows that this is not the case. When the plates of the crinoidal vault are nodose, as in Gilbertsocrinus tuberosus the lines of growth in adult shells, contrary to the more usual manner among gasteropods generally, are far from being even approximately parallel to one another; and in the lip of the shell a sinus, caused by a nodose plate at one period of growth, may be represented in the next by a projecting lobe, which extended into a deep depression between the nodes of two contiguous plates.

In considering the structural peculiarities of the Capulus shell, three features—the general form, the configuration of the aperture, and the surface makings—appear to have been susceptible of considerable modification as the result of the sedentary habits of the mollusk. An examination of a large series of certain species of the genus reveals the fact that the variant tendency in all three of these particulars is much greater than might be supposed; and when the attachment of these gasteropods to foreign bodies is taken into consideration, the causes for such varietal development become manifest. It has been shown that the mollusk doubtless remained fixed throughout a greater portion of life, and that the surface upon which it first settled determined in great part both the form of the shell and the shape of its aperture. When the surface of attachment was flat, as in the vaults of Gilbertsocrinus and Strotocrinus, the molluscan shell was greatly depressed and the peristome ample; but when the foreign body was strongly convex the shell was more conical, with a comparatively much smaller aperture. It has been stated elsewhere that, in regard to the second of the three variant features observable in the calypræan shell, the margin of the peristome partakes of all the inequalities of the surface to which the gasteropod adheres. Few of the species attached to crinoids may be said to have true surface ornamentation, for the longitudinal folds or plications in the shell are in many cases due chiefly to the character of the surface of attachment. In some specimens of Igoceras pabulocrinus (Owen) there have been noticed, in addition to
the undefined longitudinal folds, several series of small conspicuous nodes; but these in all examples seem to result from the peculiar nodose ornamentation of *Platyrin us hemisphericus* with which the univalves are associated.

It appears, then: (1) that some, if not the majority of the ancient Capuli were stationary during life; (2) that the nourishment of many of these sedentary gastropods was derived, in great part at least, from the excrementitious matter from crinoids; and (3) that the form of the peristome and its marginal configuration, being dependent upon the surface of attachment, have small value as characters for specific distinction.

Range of Variability.—Among modern gastropods, attention of late has been called frequently to the variation in the form of the shell as the result of differences in the local conditions of station. In the extension of this inquiry to fossil groups many difficulties are met with, among which the most formidable, perhaps, is the inability to obtain enough material for an adequate consideration of the subject. Usually the shells of any one species are not abundant locally, nor is the representation from localities, more or less widely separated geographically, sufficient to permit of satisfactory comparisons. Lately Capulus has unexpectedly furnished a very interesting series illustrating the range of variation in several species. The comparison is perhaps most striking in the projection of ten specimens of *Capulus equilateralis* as recently graphically represented. (Figures 10 and 11.) The case referred to is only a
single one of many to be found among the mollusca. It is very significant in its bearing upon the true basis of species, and indicates plainly, that in attempting to separate specimens specifically, too much stress should not be placed upon individual characters.

Other Causes of Variation.—In connection with variation of species, it is of great interest to note the apparent effect of gravitation in altering the form of some gastropod shells. This phase may be more satisfactorily considered in _Capulus equilateralis_ and _I. pabulocrinus_ than in most other species, because when attached to the vaults of crinoids, the station of each individual is definitely known. As stated already, the first of these forms generally rests on flat-vaulted crinoids, while the second commonly adheres laterally to such echinoderms as _Platycrinus hemisphericus_. _Capulus equilateralis_ when occupying the same position is pendant, the apex of the shell being directed downward instead of in the opposite direction, as when resting on the ventral surface of such forms as Gilbertsocrinus. The shell thus pendant exhibits a decided tendency to straighten, or uncoil, consequently becoming longer, the apex freeing itself completely from the body-whorl. In comparison, therefore, with a representative example of _V. equilateralis_, those shells resting on flat crinoidal vaults are very much depressed, the aperture proportionately broader and the spire more closely coiled. Those individuals attached laterally to crinoids have a tendency to become more conical, the aperture being relatively smaller, while the spire is entirely free from the last volutition, and the apex often extends to a considerable distance beyond the posterior margin of the aperture.

On the other hand, _I. pabulocrinus_ is commonly a more or less elongate conic shell. When attached to Platycrinus it often assumes a very different aspect. As growth proceeds the posterior side becomes relatively shorter, the apex slightly curved backward, and not unfrequently there is a marked tendency toward a strongly arcuate form.

The Kinderhook forms of the genus are, on the whole, extremely unsatisfactory for systematic determination, since the
most of them are merely internal casts. They form, however, an important feature of the fauna inclosed in these rocks. The Burlington and Keokuk species are very closely related, and in part extend through both epochs, after which the genus is of rare occurrence in the continental interior. It is of considerable interest to note that this numerical reduction after the close of the Keokuk was accompanied by a marked depauperization of the individuals which struggled through to the end of the Paleozoic. Through all the St. Louis, Kaskaskia and Coal Measures the species, without exception, are diminutive. The *O. acutirostre* of the St. Louis became reduced to nearly one-half the size it possessed in the Keokuk, notwithstanding the fact that this species had perhaps a wider geographical range than any other congeneric form occurring within the Mississippi basin, and was therefore better adapted to preserve its full vigor, at least in some parts of its distribution.

Structural Characters.—Shell depressed, subglobose, obliquely subconic; body-whorl very large. Aperture ample, expanded; labrum more or less sinuous, inner lip not ancylosed to the spire. Surface glabrate, plicate, or sometimes spiniferous; lines of growth often umbriate.

The shells which have been referred to *Platyceras* present a manifold variety of forms. It is, therefore, not improbable that a fuller examination and comparison of all the known species will demand a somewhat different arrangement and subdivision of the group than that now existing. In this section the shell presents few salient characters for consideration. As already stated, it is often with extreme difficulty that the forms of this group can be satisfactorily separated from certain varieties of *Platystoma* and various genera of Patelloid shells. In general, however, the test of *Capulus* is coiled, subspirail, arcuate or subconic, with a relatively small spire and an immense, rapidly expanding body whorl, while the surface is usually without ornamentation. The large majority of the species of this group possess tough, massive shells, which are generally, therefore, in a much better state of preservation than most of the associated molluscan remains.
Muscular Scars.—The internal scars so prominent in the shells of living Capulus and modern allied genera are seldom observable in Paleozoic forms. Hence, having never noticed in individuals of the latter the peculiar horseshoe-shaped impressions, Hall assigns this as the only reason for regarding Capulus and Platyceras as distinct genera. Since the time that the American author first expressed this opinion, a sufficient number of fossil examples have been found to indicate clearly the real nature of these scars. A careful comparison shows that they are not very different from those of typical Capuli, though considerable variation is noticeable in the several forms, and even in shells of the same species.

As exhibited in *I. pabulocrinus,* and some other species, the muscular scars are connected by a narrow band traversing the posterior side of the shell. In adult examples, the scars are situated about one-fourth the distance from the apertural margin to the apex. In some excellent internal casts of *Capulus protei* (Ehlert) from the lower Devonian of Mayenne, the muscular impressions are somewhat different from those of congeneric species from America. The scar on the right side is comparatively large, oval and well defined; a narrow sinuous band passes around the spire posteriorly and terminates on the left side in an enlarged scar similar to but much smaller than that on the right. In some specimens the linear band does not appear to be perfectly continuous from one side to the other.

Capulus subsinuosus (Worthen)

Shell composed of about three and one-half rounded volutions, the first two and a-half or three of which increase rather rapidly in size, are closely coiled together, and depressed with the spire on a level with or below the upper side of the outer turn; body portion very rapidly expanding, so as to cause the upper side to rise considerably above the inner turns, with which, however, it continues very nearly or quite in contact,
even to the aperture, which is large and sub-circular, or transversely oval; lip with its margin all around, excepting on the inner side, undulated so as to form some eight or ten more or less well-defined sinuses, with projecting processes between. Surface marked only by fine undulating lines of growth.

Horizon and localities.—Upper Silurian limestone: Bailey landing (Perry county).

As in the case of a considerable number of other shells from the Mississippi basin, it is almost impossible to detect any specific differences between them and the more eastern forms; and it is very likely that the specimens under consideration will have to be referred to some one of the New York species described by Hall.

Capulus haliotoides (Meek & Worthen).

Shell below medium size, very obliquely ovate, forming one to two very rapidly expanding volutions, which are contiguous except near the apertural margin; whorls compressed, somewhat sharply rounded along the periphery. Spire slightly elevated above the level of the body turn. Aperture ample, oval; labrum somewhat sinuous. Surface marked by fine undulating lines of growth.

Horizon and localities.—Lower Carboniferous, Kinderhook limestone: Sedalia.

Capulus paralius (White & Whitfield).

GASTEROPODS.

Shell like that of an immature *C. equilateralis*, but much thinner and more delicate.

Horizon and localities.—Lower Carboniferous, Chouteau limestone, Sedalia; Burlington limestone: Louisiana.

The apical portion of the shell is more slender and extended than the type would indicate from casual examination. The typical specimen has the longitudinal folds much more prominent than is apparent in an average example of the species; for in the majority of individuals the plications are scarcely noticeable. This species is widely distributed geographically, and preserves its individuality remarkably over its entire range. Typical specimens have been collected at LeGrand, in central Iowa, at Burlington, in the southeastern part of the same state, at Lodi, Ohio, and Sedalia, in west-central Missouri.

Careful comparisons of the Sedalia specimens described by Miller, and those from other localities mentioned, leave little room for doubt that the recently named *Platyceras nasutum* is anything else than the same form noted more than 30 years ago, by White & Whitfield, under the title of *P. paralium*.

Capulus tribulosus (White).

Plate iii, figs. 11a-c.

Capulus tribulosus Keyes, 1890: Am. Geol., vol. VI, p. 9.

Shell rather below medium size, subspiral, rather slender, forming about one voluotion; regularly expanding to the aperture. Apex incurved, far removed from the body of the shell. Aperture irregularly oval; usually more or less broadly lobed posteriorly; lip sharp, irregular, with usually a deep sinus anteriorly. Surface glabrate, but exhibiting numerous fine, closely arranged lines of growth; also marked by three longi-
tudinal series of long tubular spines, extending from the apertural margin about three-fourths the distance to the apex. Of these spiniferous rows two are disposed laterally, one on each side and the third centrally and dorsally.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal, Louisiana.

This is one of the few spiniferous species belonging to the genus Capulus; and only two others of similar character occur in the American Carboniferous rocks. It appears to be closely allied to _C. biserialis_ (Hall), and may eventually prove identical with that form, from which it apparently differs only in having three, instead of two, rows of spines. Thus far it has been noted only in the two divisions of the Burlington limestone, when it occurs in the thin sandy-clay partings, associated with delicate and beautifully preserved bryozoans. The type specimen is not a characteristic representative of the species, being in several particulars quite abnormal.

Capulus latus (Keyes).

Plate liii, figs. 13a-b.

Platyceras latum Miller, 1890: N. A. Geol. and Pal., p. 416.

Shell somewhat like _C. equilateralis_ in general physiognomy, but more campanulate, and with the apical parts relatively smaller.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Burlington (Iowa); Hannibal.

This form is seldom well preserved, the majority of the specimens being more or less exfoliated.
Capulus obliquus (Keyes).
Plate III, figs. 14a-b

Shell of medium size, irregularly oblong, subspiral, forming one volution; regularly enlarging, slightly more rapidly transversely than in the opposite direction, to the aperture. Apex large, obtuse, far removed from the body of the shell, which is broadly arcuate; very noticeably oblique to the plane of general curvature in the body of the shell. Aperture irregularly quadrangular in outline; margin sharp and more or less sinuous. Surface marked by several undefined plications, which sometimes form longitudinal series of obscure nodes; these are crossed by numerous sinuous, often somewhat imbricated, lines of growth.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal; Burlington (Iowa).

Capulus biserialis (Hall).
Plate III, figs. 12a-b.

This species is similar to Capulus tribulosus (White), but has only two, instead of three, longitudinal rows of spines.

Horizon and localities.—Burlington limestone: Quincy, Illinois.

A marked characteristic of this form and also of C. tribulosus (White) is, that the tubular spines are arranged in longitudinal rows, while in the few other American spine-bearing Capuli, there is no regularity in the distribution of the spinous processes. The spines are easily broken, and hence are seldom preserved to their full length; often they are scarcely noticeable.
Capulus equilateralis (Hall).
Plate III, figs. 10a-b.

Platyceras equilatera White, 1880: Geol. Sur. Indiana, p. 514, pl. vii, fig. 5.

Shell of medium, but often attaining a large size; extremely variable, hemispherical to oblique conical, with incurved spire; volutions one to two in number, free or contiguous, moderately enlarging for some distance from the apex, and then rather abruptly and rapidly expanding. Aperture very large, broadly oval, or often nearly circular; lip thin, more or less undulating. Surface smooth, but toward the apertural margin exhibiting numerous, often strongly imbricating, sinuous lines of growth. Frequently many small obscure longitudinal folds are also present.

Horizon and localities.—Keokuk limestone and shales: Wayland (Clarke county); Keokuk and Bonaparte (Iowa); Warsaw and Niota (Illinois). Burlington limestone: Burlington (Iowa); Springfield (Greene county).

This species seems to be one of the most abundant gastropods of the Keokuk beds. Some of the shells often attain very considerable measurements: height, 45 mm.; length along the dorsum, 95 mm.; breadth, 60 mm. Not only is the species under consideration variable in size, but it is extremely so in form and in the configuration of the apertural margin. Perhaps no Capulus in all the Carboniferous presents so wide a range of variation as does this species. Immature shells appear to be glabrate, but as growth proceeded they became more and more rugose and imbricate. The spire is as often contiguous as free and simply incurved; and in adult specimens it
is relatively very small. The longitudinal folds are not frequently very pronounced, and being few in number, impart a peculiar trilobate appearance to the shells; in other examples all traces of plications are wanting.

The extensive series of *C. equilateralis* from the Crawfordsville shales has been very thoroughly studied of late, disclosing many interesting phases of the habits of these gastropods, hitherto not elsewhere presented in such an eminently satisfactory manner. At this locality the shell is usually attached to the calyx of *Gilbertsocrinus tuberosus* (Lyon and Casseday), but the mollusk is not invariably associated with this particular species of crinoid, as Meek and Worthen supposed. A number of typical examples of the Capulus in question have been observed adhering to *Platyocrinus hemisphericus* (Meek and Worthen), with which, however, is more commonly associated *I. pabulocrinus* (Owen). In Gilbertsocrinus the vault is relatively large, nearly flat, with the anal opening located midway between the center and margin. In both *G. tuberosus* (L. & C.), from the Keokuk shales, and *G. typus* (Hall), from the Burlington limestone, the ventral plates are convex, or, as in many specimens, very nodose. The growing margin of the gasteropod shell having adapted itself exactly to the irregularities of the surface of the crinoidal vault, necessarily was always more or less deeply sinuous, each sinus being produced by the nodosity of the vault plate in contact; while the small linguiform projection between two sinuses extended down between the nodes of two contiguous plates. The extreme nonparallelism of the lines of growth, so conspicuously evident in the shells of many ancient Capuli, is thus capable of being traced, and especially in those examples in which the nodosity of the dome plates of the crinoid has reached a high development. This phenomenon of nonparallelism of the lines of growth is not therefore indicative of a change in station of the gasteropod, as has been suggested at various times.

It has been clearly shown elsewhere that shells of *C. equilateralis*, when adhering to flat surfaces, are always very much depressed and have the aperture proportionately much more
expanded than the average specimen, while the spire is closely incurved, even touching the body of the shell. When the gastropod is found attached to strongly convex surfaces, or to the calyces of Platycrinus, the shell enlarges less rapidly, and there is also a tendency for the apex to become free from the body-whorl, and even to completely uncoil, often to such an extent as to approach closely some forms of the *I. pabulocri-
nus* type.

Owen apparently had this form in hand when he figured a shell as *Ancella crasicollis* from the Keokuk rapids of the Mississippi river, where it occurs quite abundantly. Its manner of preservation, however, tends greatly to obscure its real character; and it is doubtless for this reason chiefly that Owen failed to detect the true nature of the form.

Capulus ovalis (Stevens).

Shell very small, subglobose; volutions about two and one-half in number, contiguous, rather rapidly expanding; spire very small.

Horizon and localities.—Kaskaskia limestone: Union and Randolph counties, Illinois; Ste. Genevieve county, Missouri.

Capulus ovalis is one of the smallest of the lower Carboniferous Capuli, having a height of only three to six millimeters and a maximum breadth of eight millimeters.

Capulus parvus Swallow.

Plate liv, figs. 5a-b.

Platyceras nebrascense White, 1875: *U. S. Geog. Sur. w. 100 merid.*, vol. IV, p. 159, pl. xii, fig. 5.

GASTEROPODS.

Shell like *C. tribulosus* (White), but without spines, and with the apex inclined quite noticeably to the right.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

A careful comparison shows the form described from Nebraska by Meek is only a more matured individual of *C. parvus*. Since, however, Swallow's species was poorly defined and was never figured, and as Meek was the first to give a clear diagnosis of this form, both by a full description and by good illustrations, it is, perhaps, questionable whether Meek's name should not really be retained for the form, *Platyceras nebrascense* having been almost universally applied to this species as occurring throughout the West.

Genus *IGOCERAS* HALL.

The reasons for reviving Hall's generic term Igoceras have already been stated fully elsewhere. It is proposed to apply the name only to certain more or less distinctly conical shells which were originally under Conrad's abandoned genus Platyceras. The following American species may be considered as properly belonging here:

- *Platyceras conicum*, Hall.
- *P. perplexum*, Hall.
- *P. plicatum*, Hall.
- *P. pyramidatum*, Hall.
- *P. capulus*, Hall.
- *P. subplicatum*, Meek & Worthen.
- *P. perplexum*, Hall.
- *P. plicatum*, Hall.
- *P. pyramidatum*, Hall.
- *P. capulus*, Hall.

_Igoceras pyramidatum* (Hall).

Shell much like that of *I. pabulocrinus*, but more ventricose, and the sides convex instead of nearly straight.

Horizon and localities.—Upper Silurian limestone: Bailey landing (Perry county).
Igoceras quincyense (McChesney).

Plate iii, figs. 10a-b.

Shell of medium size, broadly conical, often more or less elongated; expanding very rapidly and regularly from the central or sub-central apex to the aperture. Usually five broad, rounded ridges extend from near the apex to the aperture, which is consequently more or less prominently quinquelobate; the ridges are not unfrequently further divided into two or more smaller folds. Lip sharp, sinuous. Surface marked by sub-imbricating lines of growth, and also by numerous small, often undefined, longitudinal costae, which do not appear in the cast.

Horizon and localities.—Burlington limestone: Burlington (Iowa), Quincy (Illinois); Sedalia.

The specimens described by McChesney and by Meek and Worthen, were either exfoliated examples or internal casts; and this is the condition in which the species is usually found. Owing to the peculiar state of preservation, the shells quickly crumble away in handling, leaving only the internal casts, but the distinctive quinquelobate character always renders them easily recognizable. In the examples figured by McChesney, and also by Meek and Worthen, the apices are wanting, but the individuals were not as imperfect as was supposed.

During the earlier period of their growth many of the shells of *I. quincyense* were very broad, but when attaining about one-third their maximum size, the aperture abruptly
became relatively smaller, leaving a sharp sub-angular ridge around the shell, parallel to the apertural margin. This abrupt decrease in the expansion of the shell imparts to the natural internal casts the appearance of an apical truncation or fracture.

In its attachment to Paleozoic crinoids, the only form with which *I. quincyense* has thus far been found associated is *Physetocrinus ventricosus* (Hall) a species having a rather depressed hemispherical dome, in which the ventral opening has a subcentral location. The dome-plates are small and numerous, and frequently studded with small prominent tubercles or sub-spinous processes, which impart to the gasteropod shell series of minute corrugations extending over each of the larger folds.

Igoceras capulus Hall.

Shell conical, much depressed, with a few broad, more or less obscurely defined longitudinal folds; apex nearly central. Aperture very large, circular in outline; lip somewhat undulating. Surface marked only by lines of growth. The muscular scars, as observed in some specimens, consist of curved, oblong impressions on each side, united behind by a narrow band.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal, Ritter station (Greene county).

Although much more depressed than any other known form of the genus, there seems to be but little doubt, at present, that the shell under consideration properly belongs to the same group as *I. pabulocrinus* of Owen. Hall's original description was rather incomplete and unaccompanied by illustrations of any kind, besides being published in an obscure place; but the common occurrence of the species at the typical locality leaves no room for reasonable doubt as to the shell Hall had
in hand. In regard to Meek & Worthen’s *Metoptoma umbella*,
there appear to be no good grounds for considering it as dis-

tinct from Hall’s form.

Igoceras pabulocrinus (Owen).

Plate lxi, figs. 3a-b, and pl. liv, figs. 3a-1.

Platyceras subrectum Hall, 1859: Geology Iowa, vol. I, Supp., p. 89. (Not *P. subrectum* Hall, 1859.)

Shell more or less conical, often somewhat oblique, with
usually many undefined longitudinal folds; apical portions
slender, expanding regularly at first and then more rapidly.
Apex attenuated, often slightly deflected toward the posterior
side. Surface smooth, but toward the aperture marked by
numerous undulating, frequently imbricating lines of growth.

Horizon and localities.—Keokuk limestone and shales:
Keokuk, Iowa; Warsaw, Illinois; Crawfordsville, Indiana.
Burlington limestone: Burlington (Iowa); Springfield (Greene
county).

The name *pabulocrinus* was given to the species under
consideration for the reason that the mollusk was thought to
form the food of crinoids, since it was often found adhering to
the calyx of the echinoderm directly over the opening in test.
This explanation appears quite plausible; but long ago this
view was proved false. Owen gave practically no descrip-
tion of the shell; and his figure was roughly executed,
showing hardly anything more than the bare outlines of the
specimen. The illustration, however, represents the gasteropod attached to the side of the common and well-known crinoid *Platycrinus hemisphericus* Meek and Worthen, so that not the slightest doubt is entertained as to which shell it was intended to portray. Besides, at Crawfordsville, this mollusk is almost invariably associated with the crinoid just mentioned. Only two other species of the genus—*C. equilaterialis* and *C. sulcatinus*—are known to occur at the Indiana locality, and these are both very different. Taking all things into consideration, therefore, and remembering that Hall’s name *Platyceras subrectum* had been preoccupied, it seems advisable to restore Owen’s title for the shell in question.

The form most closely allied to this species is *C. fisurella* (Hall), from which it is distinguished in being proportionally more elongate, while the apical part of the shell is characteristically slender. Ordinarily the shell is more or less conspicuously plicate, but the folds are, for the most part, narrow, and usually irregular and broken.

For an elongated specimen, Meek & Worthen have indicated the name *Platyceras extinctor* “should it prove distinct,” but the term cannot be regarded as having been actually proposed, while the form itself is manifestly only an attenuated internal cast of *I. pabulocrinus*. It, however, exhibits well the characteristic muscular impressions.

This species, like *C. equilaterialis* (Hall), with which it is usually associated, occurs in the Burlington limestone and ranges through the Keokuk. Its association with crinoids at Crawfordsville, Indiana, has been for the most part with *Platycrinus hemisphericus* M. & W.; while at Burlington it adheres to a structurally similar form, *Eucladocrinus millebranchiatus* W. & Spr. The vault in the first species is very much elevated, and the anal opening is situated laterally between, and slightly above, two arm bases. The dorsal cup is ornamented by numerous conspicuous rounded tubercles. As the shell increased in size the pliant apertural margin encountered successively the different nodes, which caused the lip at these points to deflect outward, giving rise to variously shaped pro-
minences on the shell; when the tubercles were arranged in regular rows, there appeared a series of nodular plications. In many cases the gasteropod shell increased in size much faster than the echinoderm, and the lip of the shell consequently often encompassed the two posterior-lateral arms, and not frequently, also, the stem of the crinoid. The result was two large, deep sinuses in the anterior, and one similar indentation in the posterior margin of the shell. The effect of the tubercles was to impart a similar sinuous character to the entire margin, hence the lip was always crenated during the latter part of the mollusk's existence. The continual change in the nature of the surface upon which the gasteropod rested, also interfered with the uniform and regular growth along the apertural margin, and the lines of growth are consequently often strongly imbricated.

Igoceras fissurella (Hall).

Plate III, fig. 2.

The species under consideration is closely allied to Igoceras pabulocrinus (Owen), from which it differs chiefly in being much more depressed, with the aperture consequently very much larger in proportion to the size of the shell.

Horizon and localities.—Keokuk limestone: Warsaw and Nauvoo, Illinois; Burlington limestone: Burlington (Iowa).

The specific name of this form is very inappropriate, having originated in a misconception on the part of the author of the species as to the true nature of the apical perforation in the type specimen. It has been clearly shown by Meek and Worthen that the aperture in the apex is not a natural opening, but an accidental fracture in the shell.

Recently typical examples of I. fissurella have been found in the upper Burlington limestone, thus adding another case in support of the view lately advanced, that the faunas of the
Keokuk and Burlington limestones are much more intimately related biologically than had hitherto been generally regarded; and that many so-called Keokuk species are merely the subsequent genetic representatives of Burlington forms. The validity of their distinction simply on account of occurring in differently named geological horizons cannot be sustained. It is not to be supposed that the biologic sequence of two divisions, as the Burlington and Keokuk, so closely related stratigraphically and lithologically, and deposited under identical, quiet conditions should be so widely separated faunally as the described species from these limestones would indicate.

Genus Orthonychia Hall.

Under Conrad's generic name, a multitude of paleozoic gasteropods have been described. The genus has long been made to embrace a great variety of species, some of which are manifestly not at all closely related to one another genetically. Of these a few have been assigned lately to the groups to which they more properly belong. But there still remain a considerable number of shells which are clearly not members of the genus, but whose generic relationship cannot at present be determined with exactness. It is, however, some of the more familiar species commonly referred to Platyceras that are to be considered in the present connection.

These shells fall naturally into three groups, more or less easily distinguished by the general shape. One section is characterized by having a small, closely coiled spire more or less contiguous with the large campanulate body-whorl. Another group includes those shells having a very small spire, usually arched, but seldom closely coiled, the body-whorl being much elongated vertically, or often more or less distinctly spiral. A third section embraces the straight conical forms, having very little or no curvature to the spiral parts. To the first of these groups Montfort's generic title Capulus applies; for the second and third it seems advisable to revive Hall's names, Orthonychia and Igoceras. These groups may require eventually some further modifications, but they appear to satisfy all
present requirements, at least insofar as the American forms are concerned.

The following American shells are regarded as the most typical representatives of Orthonychia:

Platyceras subrectum, Hall.
P. dentalium, Hall.
P. concavum, Hall.
P. attenuatum, Hall.
P. unguiforme, Hall.
P. lamellosum, Hall.
P. spirale, Hall.
P. acutirostrum, Hall.
P. formosum, Keyes.

Orthonychia spirale (Hall).

Shell small, elongate, completely uncoiled, gradually increasing in size from the apex; body-whorl with a few broad longitudinal folds. Aperture subcircular, margin sinuous. Surface smooth, marked only by lines of growth.

Horizon and localities.—Upper Silurian limestone: Bailey landing (Perry county).

Orthonychia cyrtolites (McChesney).

Shell small, slender, arched; composed of about one volution; dorsally sub-angular, with a broad flattened area on each side; posteriorly somewhat plicate. Apical portion small, incurved, sometimes enrolled or contiguous. Aperture moderately large, sub-quadrangular; lip sharp, sinuous. Surface marked by strongly undulating lines of growth, which are often somewhat imbricated.
Horizon and localities.—Lower Carboniferous, Burlington limestone: Hannibal.

This species appears to be genetically related to *O. acutirostre* (Hall), from the Keokuk; and eventually the two may prove identical.

Orthonychia formosum (Keyes).

Plate III, fig. 2.

Shell arcuate, enlarging rapidly to the ample, irregularly pentalobate aperture; longitudinally plicated.

Horizon and localities.—Lower Carboniferous, Kinderhook group: Marshall county, Iowa; Burlington limestone: Louisiana.

The two original specimens are attached to the ventral surfaces of specimens of *Dorycrinus immaturus* W. & Spr. At Louisiana the form occurs in chert nodules. This species resembles, in some respects, *C. paralius* (W. & W.), but is simply arcuate instead of being coiled.

Orthonychia boonvillense (Miller).

A rather small, regularly arched form, with a subcircular aperture.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville.
GASTEROPODS.

Orthonychia acutirostre (Hall).

Plate liv, figs. 2a-c.

Capulus acutirostris Hall, 1858: Geology Iowa, vol. I, p. 665, pl. xxiii, figs. 14a-b.

Shell below medium size, rather slender, strongly arcuate, forming from one to one and one-half volutions; posterior side for some distance from apertural margin nearly straight. Spire laterally more or less compressed; sometimes small and short, sometimes long, attenuate, simply incurved or enrolled. Aperture oval, or sub-circular; margin sharp, sinuous. Surface marked by somewhat imbricated lines of growth, and several obscurely defined longitudinal plications, the anterior one being usually larger than the others, and often forming a prominent subangular ridge.

Horizon and localities.—Keokuk limestone and shales: Warsaw and Nauvoo, Illinois; Saint Louis limestone: Spurgeon Hill and Bloomington, Indiana; Tuscumbia, Alabama.

This form appears to have a geographically wide distribution; and it also presents considerable variation, even within limited areas. It was originally described from Spurgeon Hill, Indiana, and like all the faunal remains of that locality is characteristically depauperate. *Platyceras uncum* M. & W. seems to be identical with this species, the imposed conditions of environment being more favorable to a normal development, and to the attainment of somewhat larger proportions.
Orthonychia chesterense (Meek & Worthen).

Plate liv, figs. 1a-d.

Shell quite small, obliquely conical, with usually five more or less well-defined longitudinal furrows, which alternate with broad, flattened folds.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Genevieve.

This little species is found almost invariably attached to the vaults of crinoids; and Meek & Worthen report one adhering to the side of *Pentremites godoni* DeFrance, "so as to entirely cover one of the pseudo-ambulacral fields and two intermediate areas." The specimens from Kentucky are nearly all attached to *Pterotocrinus—P. acutus, P. bifurcatus* and *P. depressus*. In the first of these species the ventral side is very much elevated, being nearly three times the height of the dorsal cup. The first radial dome-plates are produced into monstrous alate processes, leaving only a small summit, which is perforated for the anus. The margin of the gastropod shell has followed closely the surface in contact; and in the majority of cases, when the apical part of the crinoidal vault was not sufficiently extensive for the support of the enlarging shell, the apertural margin has been prolonged into the inter-radial depressions, forming prominent, rounded, linguiform extensions; while the protruding upper edges of the alate dome-plates of the crinoid have given rise to five deep, broadly rounded sinuses in the lip of the molluscan shell. The lines of growth in the shell are therefore extremely sinuous, the undulations in the direction of the aperture being concave on the broad, flattened folds, and convex in the furrows. In some specimens the furrows and folds have their origin near the apex—a fact which is suggestive that the forms of the shell
and the configuration of the apertural margin may not be entirely dependent upon the immediate surface in contact; but from a long-continued habit of adhering to a crinoid presenting such remarkable ventral features as Plerotocrinus, the gastropod gradually acquired, after many generations, a decided tendency toward the quinquelobate form, which made itself manifest at an early period of the mollusk's existence, and perhaps even in the latter part of the embryonic stage.

In order to bring the mouth over the ventral aperture of the crinoid, and at the same time rest securely on the limited, flattened, summit, at one side of which the anal opening was situated it was necessary for the gastropod to have the anterior portion of the shell directed toward the posterior side of the crinoid—one of the few instances of the kind that have been noted; for almost invariably the front of the gastropod shell is directed toward the anterior side of the echinoderm.

Genus Strophostylus Hall.

The group embraces a considerable number of familiar species, ranging in geologic time from the Niagara epoch to the close of the Paleozoic. It is rather unfortunate, therefore, that Conrad's term, Platystoma, had been preoccupied, having been used in generic diagnoses on at least four different occasions. Megerle early applied this name to certain mollusks closely related to Buccinum; but so far as is known, no formal publication of the term was ever made. Were this the only obstacle in the way, Conrad's genus might be allowed to stand, for the reason that Megerle's proposition was only in manuscript. Klein, however, proposed Platystoma in 1753 for a genus of Cyclostomacea. Meigen adopted the same term in 1803 for certain flies, and Agassiz, in 1829, also used it for a section of Silurid fishes. The preoccupation of Conrad's Platystoma by Klein's Platystoma, like a number of similar cases, has been objected to on the ground that the two terms, while derived from the same words, are not identical, because Conrad's compound has a connecting o. It is quite manifest, however, that both generic words are taken from platys and
stoma; and that from these it was the intention of Conrad to construct a correct generic term. In this attempt he used by mistake the connecting o, which is necessary in forming compounds with many Greek words, but which in the present instance was not called for, since the term is formed directly without the intervention of a copulatory vowel. For these reasons Conrad’s and Klein’s proposals cannot be regarded as distinct.

Since it is clear, then, that Platystoma cannot be retained for the American group of Paleozoic gasteropods, some other term must be adopted. Fisher has taken advantage of the questionable validity of Conrad’s name, and has recently proposed Diaphorostoma for the same group, with Platystoma niagarensis Hall for his type. This writer places Hall’s Strophostylus as a subgenus under Diaphorostoma; while Zittel assigns Hall’s section to a similar taxonomic rank, but under Platystoma. Had Conrad’s type of Platystoma not been a form midway between the two extremes of a series forming the group, Fisher’s name might be retained; but the type of Strophostylus is congeneric with P. ventricosum; and as this name was the next proposed, it must be taken into consideration. Were it not for this fact, two sections of this group of shells could be with great propriety made. As regards the term Strophostylus, it was established by Hall in 1859 for certain shells closely related to Platystoma, but differing chiefly in having a slightly “twisted or spirally grooved columella.”

Recently a large series of the most important species of both Platystoma and Strophostylus was examined and the matrix carefully removed from the apertural portions of many of the shells. The structural features disclosed in the various forms show a relationship between the two established genera that was long suspected. It is well known that the type of Conrad’s genus—Platystoma ventricosum Conrad—is a somewhat globose shell with a small spire elevated slightly, and having the aperture broadly ovate. The inner lip is somewhat thickened and subangular within, giving a slight indication of a col-
umella. In all respects it very closely resembles the typical forms of *Strophostylus cyclostomus* Hall, from the Niagara shales of Waldron, Indiana. The shells described under Platystoma subsequent to the appearance of the original diagnosis vary more or less from the typical species. The general tendency, however, has been to include under Conrad's genus those forms having a rather small, depressed spire, the inner lip rather thin, and simply reflected over the body-whorl. Often the lip does not touch the second volution, and the mouth of the shell is frequently free for a considerable distance. Some of these forms closely approach Paleozoic species of *Capulus*.

When, in 1859, Hall examined the interior of a Platystoma-like shell (which he afterward called *Strophostylus andrewsi*), he found that the specimen had the inner lip considerably thickened and somewhat angular within. As a matter of course, the interior angularity appeared twisted on account of the continued enlargement of the shell to the adult stage. In some individuals the thickening was considerably exaggerated, and formed a short projecting lamella or ridge. But from the figures given by Hall it is clear that this was not entirely characteristic, and the two specimens figured in the text differ widely in this particular. Nevertheless, Strophostylus was proposed, and has since been applied to nearly a score of species.

The limits of Conrad's and Hall's genera have never been precisely defined in the descriptions of species, and the larger majority of the forms in question have manifestly been assigned to their respective groups, more on account of the general shape of the shell than from an examination of the columella parts, which were only in exceptional cases visible without the removal of the hard matrix.

From the foregoing it is evident that Strophostylus and Platystoma are practically identical, and that, therefore, the two must be regarded as synonymous. The type of the first section, *Strophostylus andrewsi*, actually stands at one extremity of a rather extensive and variant series of shells, of which *Platystoma ventricosum* is one of the median members.
At the other extremity are the Capulus-like forms, similar to those described by White and Whitfield as *Platyceras bivolve*.

Strophostylus, as now understood, embraces three rather well-marked types of shells. One of these sections contains chiefly those extreme forms upon which the genus was originally founded. These shells are subglobose, with the spire somewhat elevated; the columella parts are prominent, and the front portion of the inner lip is considerably thickened, often having a distinct depression or groove, which continues inward around the columella. This group finds its greatest development in the Upper Silurian. Another section includes shells similar to *Strophostylus (Platystoma) niagarensis*, in which the spire is depressed, the inner lip simply ankylosed to the body-whorl, and thickened to little or no extent. These forms predominate in the Devonian. They closely approach certain Capuli, which have been called Platycerata, and it is very probable that the generic position of a number of species in the latter genus will be modified upon more critical examinations of all the forms. To the third section belong chiefly Carboniferous shells like *Strophostylus (Platystoma) peoriensis* McChesney.

Strophostylus reversus (Hall).

Shell ventricose, subovate; volutions about two in number, rapidly increasing in size from the apex; spire very small, depressed, somewhat flattened; aperture large, subcircular in outline. Columella narrow, furrowed longitudinally. Surface marked only by lines of growth.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville (Cooper county).

As remarked in the Synopsis of American Carbonic Calyptraeidae, this form is not a member of the Capulus nor Platyceras group, but manifestly belongs to Strophostylus as now understood. Meek’s discovery of a well-defined, grooved columellar thickening in the Boonville specimen adds further proof of its affinities to the genus just alluded to.
Strophostylus ? carleyana (Hall)

A minute shell, consisting of about three whorls; and with inner lip greatly thickened.

Strophostylus nana Meek & Worthen.

Shell very small, globose, slightly wider than high; volutions three or four in number, increasing rapidly in size; body whorl very large and ventricose, spire low and small; suture deep. Aperture large, broadly ovate. Surface marked by fine lines of growth, which pass into small regularly arranged elevations near the suture.

Horizon and localities— Upper Carboniferous, Upper Coal Measures: Clinton (Henry county), Kansas City.

A recent examination of a good series of the form under consideration from Iowa, appears to indicate that the shell is not a true *Naticopsis*, as was thought by Meek & Worthen, and as is generally understood, but belongs more properly to Hall’s genus *Strophostylus* as recently amended. As already stated in another place, it has been deemed advisable to modify somewhat the limits of *Naticopsis*, and apply the name only to those shells having a close resemblance to the typical species which, without exception so far as is known, have a more or less well-defined series of short, transverse ridges near the sutural line.
Strophostylus remex (White).

Plate lv, figs. 7a-b.

Shell rather small, partially uncoiled toward the aperture; whorls about four in number, very convex; spire short. Aperture sub-circular; lip sharp. Surface smooth, or only marked by lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

The form under consideration is not of uncommon occurrence in western Missouri and eastern Kansas, and appears to be identical with the shell described by White as Naticopsis remex. Well-preserved shells show plainly that this species is a member of the group represented in the Coal Measures by Platystoma peoriense of McChesney and has none of the distinguishing characters of Naticopsis as at present understood. The last whorl is somewhat uncoiled, just as in certain Upper Silurian species from Waldron, Indiana.

Strophostylus peoriensis (McChesney).

Plate iii, fig. 6.

Shell of medium size, thin, somewhat elongated; volutions about two in number, contiguous, enlarging rather rapidly, the outer one quite ventricose; spire depressed, scarcely rising above the general level of the whorls; suture rather deep, distinct. Aperture ovate. Surface glabrate, with very fine lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Genus Naticopsis McCoy.

The described species of Naticidae from the American Paleozoic rocks number about three score. These have commonly been referred to the genera Naticopsis, Platystoma and Strophostylus. The first of these three terms was proposed in 1844 by McCoy, and included shells which had previously been assigned to the modern genus Natica. Seven species were enumerated under the new title; but of the accompanying figures only two showed the apertural characters. In America the shells of this group were first recognized by Norwood and Pratten, who described from the Coal Measures *Natica ventricosa*. Shortly afterward several other forms were detected and placed under the same genus. It was then found that McCoy's generic term was applicable to the American forms hitherto regarded as Naticae; and still more recently it was discovered that in addition to the species generally recognized as belonging to Naticopsis, the genus should also include several other forms now known under other generic titles.

The species that have been referred to Naticopsis appear to form at least two, and possibly three, more or less well-defined groups. These sections differ so greatly in several important particulars that actually they should be regarded as generically distinct. Meek and Worthen, recognizing the fact, proposed to establish three subgenera; but their subdivisions were based upon surface ornamentation. The three sections were: Naticopsis proper, a group typified by *Nerita subcostata* Goldfuss, but not named; and Trachydomia, including *N. nodosa*, M. & W., *N. hollidayi* M. & W. and *Littorina wheeleri* Swallow; besides two European species. In Naticopsis proper, as represented by the typical forms, and by the majority of American species referred to the genus, the shells are relatively thin; the spire very short; the outer lip extremely thin and sharp; the inner lip also thin and slightly depressed; the last volutions generally more or less flattened or concave on the upper half, and marked toward the suture
by numerous small, short, equidistant costae parallel to the lines of growth; the surface otherwise glabrate.

Naticopsis ventricosa (Norwood & Pratten).

Shell ovoid; spire small, depressed; volutions two or three, the last one very large and ventricose, regularly rounded, except near the suture, where it is slightly flattened or concave. Suture deeply impressed toward the aperture, which is oval, compressed above; labrum sharp; columellar lip thick, smooth. Surface marked by fine lines of growth, which, near the suture, pass into small, well-defined, rounded ridges.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City, Clinton (Henry county).

Genus Trachydomia Meek & Worthen.

The term *Trachydomia* was originally proposed by Meek & Worthen in 1866, as a subgenus of *Naticopsis* McCoy. It is now believed that the characters are sufficiently well marked to admit of a distinct generic separation from McCoy’s genus.

In contradistinction to *Naticopsis* the shells of *Trachydomia* are massive, with the spire larger and more elevated; the outer lip very thick, but abruptly becoming sharp; the columella very thick, the callosity thick and greatly extended; the volutions shallowly channeled along the suture; and the surface covered with numerous small equidistant nodes. But two North American specimens—*Littorina wheeleri* Swallow
and *Naticopsis nodosa* Meek & Worthen—seem to be referable to *Trachydomia*; the other three forms described under the genus *M. & W.*, *T. hollidayi* M. & W., and *T. nodulosa* Worthen, being at present regarded merely as more mature individuals the first of *T. nodosa*, and the second of Swallow’s species. A comparison of an extensive series shows that within certain limits the shells of this group are quite variable. The callosity in some specimens is much more extended than in others; while numerically the surface nodes vary greatly in different individuals, and become much larger and more widely separated as, with age, the shell increases in size.

Trachydomia wheeleri* (Swallow).

Plate IV, fig. 8.

Shell thick; whorls four or five; the spire rather elevated, aperture ovate, outer lip rapidly becoming attenuated; callosity of the inner labrum thick and greatly extended. Columella heavy. Surface covered by numerous regularly arranged tubercles.

Horizon and localities.—Upper Carboniferous, Coal Measures: Clinton (Henry county), Kansas City. Also Peoria, Springfield, Alton and elsewhere in Illinois; Des Moines, Iowa; and, according to White, in New Mexico.

The first species of this group described from the American Paleozoic rocks was brought to notice by Swallow under the name of *Littorina wheeleri*. Since the appearance of Swallow’s description, three other similar shells have been given
specific titles: *T. nodosa* M. & W., which was regarded as the type of the genus; *T. hollidayi* M. & W. and *T. nodulosa* Worthen. Now the known shells of this type have a wide geographic distribution. A careful comparison of a considerable number of shells from widely separated localities leads to the conclusion that the described forms of *Trachydomia* should all be referred to only two species—the earliest noticed—*T. wheeleri* and *T. nodosa*. The various slight modifications in size and number of nodes are ascribed to local differences in environment; and the complete intergradation of the several forms renders this view necessary.

The callosity of the inner lip becomes very much thickened in some individuals, but this feature is not so conspicuous in the majority of examples. It is interesting to note in this connection that among the shells from Illinois there are a number in which the coloration of the callous portions and of the interior surface is still preserved. In some cases the color is an intense shining black; in some a purplish black; in others dull, faded purple, and in a few the color has nearly disappeared. Aside from the apertural parts all traces of the original coloration of the shell are lost. Under the ordinary circumstances of fossilization the primitive coloring could hardly be expected to be preserved, except in rare cases, and the few recorded instances of Paleozoic species retaining traces of the early color are of peculiar interest.

Trachydomia nodosum (Meek & Worthen).

Shell similar to *T. wheeleri*, but much larger, more massive, and with the nodes of greater size.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Aclisina?? bellilineata Miller.

Horizon and localities.—Lower Carboniferous, Kinderhook limestone: Sedalia.

Aclisina minuta (Stevens).

Shell minute, turreted, composed of nine or more volutions. Whorls regularly convex; suture deeply impressed. Aperture subcircular. Surface ornamented by numerous fine revolving lines.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Lexington.

Aclisina stevensana (Meek & Worthen).

Shell much like *A. minuta*, but considerably larger, with fewer revolving lines of ornamentation.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Aclisina robusta (Stevens).

Like *A. minuta*, but much shorter, and with three or four volutions less.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Genus Bulimorpha Whitfield.

In addition to those species originally included Bulimorpha has recently been found to embrace several described forms long known under other generic titles. The group was first designated as Bulimella by Hall, but this name was pre-occupied by Pfeiffer. Recognizing that Hall’s name could not be retained, Meek and Worthen, who, in 1866, had just introduced Portlock’s term Polyphemopsis into the literature of American Paleontology, referred to the genus the species described by Hall under Bulimella, and also three additional forms, originally placed with Loxonema and Eulima. A number of other American fossil gasteropods have from time to time been assigned to Portlock’s genus. But Polyphemopsis was founded on very imperfect material, and its structural characters have never been sufficiently understood to definitely limit the group. It seems to be regarded by the majority of European writers as a synonym of Macrochilus Philips. The latter, however, has recently been shown to be identical with Soleniscus Meek and Worthen, which has precedence over Phillip’s preoccupied term.

Although more than half a score of species have, in this country, been referred to the genus, it is quite apparent that members of at least two very different groups were included; while a detailed comparison of the various representatives appears to indicate that, with a few possible exceptions, no forms congeneric with Portlock’s Polyphemopsis elongata, which may be regarded as the type of his genus, have as yet been recognized, with any degree of certainty, in the Paleozoic rocks of America. Until typical specimens of Polyphemopsis can be critically examined, the genus must be considered as of very doubtful utility.

As already stated, there were embraced in this group such species as constituted Hall’s genus Bulimella. These, perhaps, best exemplify the American forms of the section under consideration. The shells are fusiform, with the spire elongated; the whorls more or less decidedly convex, the last rather large;
the columella curved, abbreviated or truncated at the base; the inner lip often well defined anteriorly, and usually separated from the outer by a more or less well-marked notch; surface smooth; accordingly, this group would include not only those forms originally comprehended under Bulimella, but also the species hereafter enumerated, and perhaps a few others now known under other generic titles.

Since then, it is manifest that Polyphemopsis is not correctly applicable to any known American gastropods, and inasmuch as Bulimella of Hall had been used by Pfeiffer, it is necessary to find some more appropriate term to designate this group. Bulimorpha, established by Whitfield, is apparently the only available name for the shells in question, but whether this title will eventually be considered valid cannot now be decided.

Bulimorpha bulimiformis (Hall).

Shell fusiform, with the spire occupying about half the entire length; volutions five to six, regularly convex, and increasing in size rather rapidly, the last somewhat longer than the spire. Aperture broadly lanceolate; outer lip sigmoidal, with a small notch anteriorly; columella somewhat bent and truncated at the base. Surface smooth, but often showing faint lines of growth.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.
Bulimorpha inornata (Meek & Worthen).

Plate IV, fig. 6.

Shell rather robust; volutions about seven in number, slightly convex, the last rather large, occupying over half the entire length; suture slightly impressed. Aperture narrowly obovate, pointed above. Surface smooth, or showing only lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Eulima? peracuta Meek & Worthen.

Shell elongate-conical; spire attenuate, acutely pointed at the apex. Whorls thirteen, nearly flat, increasing gradually in size, the last forming more than half the entire length, slightly prominent around the middle, somewhat extended below; suture moderately impressed. Aperture rather narrowly subovate, acutely angular above; inner lip somewhat reflexed below, and winding around the columella so as to pass out of sight opposite the middle of the aperture; columella arcuate and tortuous. Surface smooth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Sullivan county.
Loxonema tenuilineatum (Shumard).

Loxonema tenuilineatum Miller, 1890: N. A. Geol. and Pal., p. 408.

Shell rather large, broad; volutions moderately convex; suture rather deeply impressed. Aperture subovate. Surface marked by numerous very fine, vertical costae, which arch gently backward; crossing these are low obsolete revolving ridges, of which there are from twelve to fifteen on the body-whorl.

Horizon and localities—Lower Carboniferous, Chouteau limestone: Chouteau Springs (Cooper county).

Loxonema multicosta Meek & Worthen.

Shell small, conical. Volutions about seven in number, moderately convex, the last forming about one-third the entire length; suture well defined; aperture rounded, subrhombic. Surface marked by small, nearly straight vertical costae, which number about thirty in the body-whorl.

Horizon and localities—Upper Carboniferous, Upper Coal Measures: Kansas City.

Loxonema scitulum Meek & Worthen.

Shell very small, elongate, conical, rounded below; volutions about seven, slightly curved, increasing gradually in size; suture distinct, but slightly impressed. Aperture subovate, rather sharply angular above. Surface marked by prominent rounded folds, which taper at both ends to the sutures of the respective whorls. These rounded ridges number from fifteen
to twenty-five on the last volution, while there are from three
to four less on each preceding turn.

Horizon and localities.—Upper Carboniferous, Upper Coal
Measures: Kansas City.

There have been described from the Coal Measures of
the Mississippi basin, a number of forms similar to the one
under consideration. At first glance the vertical costæ appear
perfectly straight, instead of arched, as in the more typical
shells of the genus. Upon a closer examination, however,
these ribs are found to curve considerably. The relatively
much larger size of the rounded ridges in this section of the
genus, as compared with the Devonian forms, tends greatly to
obscure the actual curvature.

The figures accompanying the reprint of the original de-
scription are somewhat misleading in at least one particular:
that is, in having the costæ of the adjoining whorls arranged
directly above one another. The statement is also made that
such is the case. Closer observation clearly shows that the
arrangement alluded to is more apparent than real; and that
in reality the ridges of the different turns are set slightly behind
those of the preceding volution. Instead, therefore, of form-
ing perfectly straight though interrupted folds, running from
the middle of the body-whorl to the apex of the shell, the long
rounded elevations are more or less twisted spirally to the
right.

The number of costæ varies with the size of the shell.
Usually there are from three to four ribs less on each whorl
than on the one immediately preceding. Thus, the eighth whorl
may have from twenty to twenty-five or more rounded ridges,
while the fourth has only a dozen or fourteen. Below the
middle of the volutions the costæ rapidly diminish both in
height and breadth, and are continued as minute hair-lines.

The aperture is oval in outline, slightly flattened on the
inner side. The lip springs abruptly from the callous portion,
instead of gradually blending with it at a low angle, but other-
wise the shell possesses all the characteristics of the typical
forms of Loxonema.
Genus Soleniscus MEEK & WORTHEN.

It has long been known that under Macrochilus of Phillips there have been described a number of gasteropodous shells, which differ very essentially from the typical forms of the genus. It has even been intimated that this genus, as generally understood, may comprise, in reality, several more or less well-marked divisions of perhaps more than subgeneric value. In a recent note the differences between the various groups were briefly considered, and two well-defined sections made out. At the same time, it was shown that the typical forms of Phillips' genus were generically identical with those of Soleniscus of Meek and Worthen. The two genera, being co-extensive, were therefore synonymous. The first of the two terms was, however, preoccupied, and inasmuch as the several other titles proposed at various times for shells of the same group were unavailable, the generic term suggested by Meek and Worthen must necessarily be substituted.

In separating the genus from Macrochilus, the authors of Soleniscus emphasized certain structural features as being distinctive in their group, but these characters are now known to be present in the typical species of the genus first established. On account of being more or less obscured by the adhering matrix, the peculiarities in question appear to have been overlooked by most writers. The assumed absence, in the members of Phillips' genus, of these characters, and their existence in the shells that were under immediate consideration, were regarded as sufficiently good reasons for the generic separation of the two groups, and for the establishment of a new genus. A single species only was originally assigned to Soleniscus. Miller subsequently referred Macrochilis hallianum Geinitz to this genus. Shortly afterward, White described two congeneric forms from New Mexico, and also included several of the Macrochilus. More recently, some additional species of Macrochilus were transferred to Soleniscus.

With two possible exceptions, the described species from America are confined to the Carboniferous, the majority occur-
ring in the Coal Measures. Some of the forms are widely distributed geographically, and a few have also a very considerable geologic range. A number of the now recognized species will probably prove to be identical with forms previously known, but these cannot be, with certainty, determined except by a direct comparison of the type specimens. The synonymy, however, of a portion of the Macrochilus has been made out as indicated beyond.

As already suggested, the forms of this group appear to be easily separable into two sections—the first typified by Macrochilus acutum (Sowerby) and Soleniscus typicus Meek & Worthen; and the second having for its typical representative Macrochilus ponderosum Swallow. The shells of the first group are characterized by being more or less elongate or fusiform, with the spire elevated, acute; body-whorl forming about one-half the length of the shell; aperture subelliptic, or oval, acutely angular posteriorly; columella imperforate, provided with a conspicuous revolving fold or ridge, which, however, in the perfect specimen is often scarcely discernible exteriorly, but as it passes inward becomes more and more pronounced, and is often accompanied by a second though much less prominent fold of similar character; test thick.

The columellar ridge is in most examples usually hidden more or less completely by the imbedding matrix filling the aperture. By the removal of the outer lip the twisted fold becomes more apparent. In a perfect specimen of Soleniscus newberryi (Stevens), this ridge is scarcely defined at the aperture, but toward the interior of the shell it gradually assumes greater prominence, becoming very much elevated, very sharp, and bordered on each side by a broad rounded canal, the outer one of which is narrower and considerably deeper than the other. On the inner margin of the second furrow there is often developed an obtuse prominence, much less conspicuous than the first, and best defined a short distance from the apertural margin. From this point it soon becomes obsolete inwardly, and finally disappears altogether. In the majority of the forms
referred to Soleniscus, the fold on the columella presents essentially the same characters, and is generally well disclosed by breaking away the outer lip of the shell slightly. When the exterior wall of the last whorl is entirely removed, the interior features of the columella are still better exhibited and for a much greater distance.

As generally recognized, the Macrochilus group has a wide range in time, beginning, according to the species described, in the Silurian, and continuing to the present time. Some of the forms have unquestionably been erroneously assigned to the genus. The typical examples are for the most part from the Devonian and Carboniferous, and, although the group probably continued to flourish after the close of the Paleozoic, it is very doubtful whether the majority of the later forms can properly be regarded as congeneric. In Europe the group became greatly expanded during the later Devonian and Carboniferous, but in America it is almost wholly confined to the latter age—the other forms referred to the genus being, with perhaps two or three exceptions, referable to other groups.

Polyphemopsis of Portlock has commonly been considered synonymous with Macrochilus, but whether it can be regarded as identical with the group as now defined cannot, at present, be satisfactorily determined. Portlock's genus was founded upon such imperfect material as to hardly deserve recognition in any case, and it would probably simplify matters greatly to ignore the term altogether. There appear to be no good grounds for assigning any American gastropods to Polyphemopsis. The species so referred have, in reality, other generic affinities.

Soleniscus cooperensis (Swallow).

A small species, having the spire occupying about one-half the entire length of the shell, and with very convex volutions.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Cooper county.
Soleniscus missouriensis (Swallow).

Shell large, somewhat ventricose; spire elevated. Whorls seven or more in number, the last large, all quite convex; suture deep. Aperture long, ovate, lanceolate; columellar fold rather prominent. Surface smooth.

Horizon and localities. — Upper Carboniferous, Upper Coal Measures: Kansas City.

Soleniscus paludinæformis (Hall).

Shell thin, rather broadly sub fusiform, the spire forming about one-half the length; volutions six to ten in number, slightly convex, the body-whorl rather more ventricose than those of the spire; suture line moderately impressed; columellar fold and grooves well defined. Surface marked only by fine lines of growth.

Horizon and localities. — Upper Carboniferous, Upper Coal Measures: Kansas City.

Soleniscus gracilis (Cox).

Shell small, like *S. brevis*, but more slender and with the spire much higher.

Horizon and localities. — Upper Carboniferous, Lower Coal Measures: Clinton (Henry county).
Soleniscus brevis (White).

Macrochilus ventricosum Hall, 1858: Geology Iowa, vol. I, p. 718. (Pre-occupied by Goldfuss.)

Shell small, thin, with the spire acute, and occupying about one-third the entire length; volutions about seven in number, rather strongly convex, the last moderately ventricose; suture impressed, but not deeply; columellar ridge well-defined. Surface polished, with a few obscure lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City, Clinton (Henry county).

The form originally described, from the lower Coal Measures of Iowa, by Hall, as Macrochilus ventricosum, is a thin, rather delicate shell, having but little resemblance to the specimens usually passing under this name, which are, almost without exception, young individuals of larger and heavier species. It is not at all probable that Hall’s form and Soleniscus brevis, described from New Mexico, are identical, as has been thought lately by White. In case, however, that they do prove to be the same, White’s name has precedence over Hall’s title, inasmuch as the latter term had long been preoccupied. Until, then, typical examples of each form can be carefully compared, it does not seem advisable to propose a new name for the form known as M. ventricosum. Besides, Cox has described a very similar shell from Kentucky, which has also been recognized in the Des Moines valley, near the place where Hall’s species was originally found; so that it is possible that this term will have priority over all others for the form now under consideration.

Soleniscus newberryi (Stevens).

Soleniscus planus White, 1881: Expl. and Sur. w. 100 Merid., Supp. to vol. III, p. xxix, pl. iv, fig. 4.

GASTEROPODS.

Shell thick, fusiform; spire equaling half the length of the shell, with the apex somewhat attenuated. Volutions seven to nine in number, the body-whorl being only moderately ventricose; outer lip thin, inner lip more or less callous. Columella slightly bent, with an obtuse fold anteriorly, which becomes more angular as it passes inward, and has a deep, broad furrow behind it. In front of the fold, and between it and the front border of the aperture, there is a narrow concave space, or short canal. Surface glabrate, marked only by fine lines of growth.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Sphaerodoma penguis (Winchell).

Macrochilina penguis Miller, 1890: N. A. Geol. and Pal., p. 409.

Shell similar to Sph. ponderosa, but smaller and more slender.

Horizon and localities.—Lower Carboniferous, Burlington limestone: Louisiana.

Sphaerodoma ponderosa (Swallow).

Shell large, heavy, subglobose, spire depressed; volutions six in number, rapidly increasing in size from the apex, last one very large and ventricose. Aperture ovate; outer lip abruptly becoming sharp. Columella smooth. Surface glabrate, with faint lines of growth.

Horizon and localities.—Upper Carboniferous, Coal Measures: Kansas City.

The form described by Shumard as *Macrochilus texanus* appears to be merely the immature shell of Swallow’s *S. ponderosa*. In individuals of the former the fold on the columnella is quite pronounced, while in the latter species it is scarcely noticeable. By making away the body whorl, however, in *S. ponderosa*, the revolving fold is found to rapidly increase in size and prominence; while a comparison of a large series of this species, of all sizes, shows that the fold on the columnella is really much more pronounced in the younger individuals, which cannot be told from the ordinary *S. texana*.

Sphærodoma littonana (Hall).

Macrochilina littonana Miller, 1890: N. A. Geol. and Pal., p. 409.

Shell very small, globose; spire of small size, somewhat elevated; volutions four, last one extremely large and ventricose. Aperture ovate. Surface showing only lines of growth.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: Ste. Genevieve.
Gasteropods.

Sphærodoma medialis (Meek & Worthen).

Macrochilus spiratus Swallow, 1858: Trans. St. Louis Acad. Sci., vol. 1, p. 196. (Not McCoy, 1850.)

Shell much like that of *Sph. ponderosa* (Swallow), but smaller, more slender, and with the spire more elevated.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City, Clinton.

Sphærodoma primogenia (Conrad).

Macrochilus primogenium Hall, 1858: Geology Iowa, vol. I, p. 720, pl. xxix, fig. 11.

Similar to *Sph. ponderosa* (Swallow), but smaller, spire higher, volutions more rounded, suture more deeply impressed.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Subulites elongatus Conrad.

Shell subulate, composed of seven to eight volutions, which are only slightly convex; suture distinct. Aperture rather nar-
rowly lanceolate, and about one-third as long as the entire length of the shell. Surface glabrate.

Horizon and localities.—Lower Silurian, Trenton limestone: McCune (Pike county).

As remarked by Meek, it is almost impossible to distinguish, generically, between Subulites, Conrad, and Polyphomopsis, Portlock. But as Conrad’s genus was proposed first, it makes little difference, insofar as the name is concerned, whether or not the two are synonymous. They are probably not. It must be admitted, however, that Conrad’s term was unaccompanied by a description, but his figures give a much better idea of the kind of a shell he had under consideration than a large proportion of the early genera proposed without figures. It is extremely curious, and indeed unfortunate, that among the dozen or more species described from North America, there is not a single one that shows clearly the structural characters of the shell. The group, however, is evidently a good one, and can be used advantageously, notwithstanding its imperfections.

Doubtful Species.

PTEROPODS.

Tentaculites incurvus Shumard.

Plate xxxv, fig. 3.

Shell very small, attenuated, curved, with prominent, sharp annulations extending to the tip; at the large extremity there are four, five to six rings in the space of an eighth of an inch, and the intervening spaces are about double the width; but near the tip the rings are much closer together, and there are from eighteen to twenty in the eighth of an inch; the whole number of rings amounts to thirty-five. The surface is covered with fine longitudinal striae, which cross the rings, as well as the spaces. In well-preserved specimens very fine transverse striae can be perceived. (Shumard.)

Horizon and localities.—Lower Silurian, Girardeau limestone: Cape Girardeau.

Conularia marionensis Swallow.

Like *O. missouriensis*, but with a greater number of transverse costae, which are also granulated.

Horizon and localities.—Lower Carboniferous, Hannibal (Vermicular) shales (Kinderhook): Hannibal.

Conularia triplicata Swallow.

Small, with the costae triple; one large median rib with a smaller one on each side.

Horizon and localities.—Lower Carboniferous, Hannibal shales (Kinderhook): Marion county.
Conularia osagensis Swallow.

A large form with narrow transverse costae.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville (Cooper county).

Conularia subcarbonaria Meek & Worthen.

Another large form with very fine, crenulated costae.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Wayland (Clark county).

Conularia missouriensis? Swallow.

Very large, elongated, four-sided, pyramidal, with two opposite sides wider than the other two; cross-section rectangular. Angles at the four corners deeply furrowed longitudinally; sides without distinct median groove. Surface marked by sharp prominent transverse ribs, which are about half as wide as the rounded furrows between; these curve more or less toward the aperture.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis; Keokuk limestone: Warsaw (Illinois).

Conularia subulata Hall.

Conularia subulata Hall, 1883: Geol. Sur. Indiana, 12th Ann. Rept., p. 373, pl. xxxi, fig. 3.

A small form with closely arranged ribs.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.
Conularia crustula White.

Plate xxxv, fig. 2.

Shell rather small, having the usual four-sided pyramidal form—the four sides being equal, and flat or nearly so near the apex, but slightly convex toward the aperture; the four angles distinctly furrowed, and a slender furrow also marks the median line of each side, which furrow is more distinct upon the cast of the interior than upon the exterior surface of the test. Surface marked by the numerous transverse, raised striae, common to this genus, which arch gently forward from each of the four angles; the majority of the striae are continuous across the median line of the sides, and also across the angle-furrows, in crossing which they bend slightly backward. (White.)

Horizon and localities—Upper Carboniferous, Upper Coal Measures: Kansas City.
CHAPTER XIV.

CEPHALOPODS.

Phragmoceras missouriensis Miller.

Horizon and localities.—Lower Carboniferous, Chouteau limestone: Sedalia.

Gonioceras anceps Hall.

Horizon and localities.—Silurian, Trenton limestone: Ste. Genevieve county.

Endoceras elongatum? Hall.

Like Orthoceras in external appearance; very large, attaining a diameter of six or more inches and probably a length of more than ten feet.

Horizon and localities.—Lower Silurian, Trenton limestone: Auburn (Lincoln county).

Goniatites gorbyi Miller.

A large lenticular form, with smooth surface and deep lobes and saddles.

Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Sedalia (Pettis county).
Goniatites osagensis Swallow.

Shell small, with regularly rounded volutions; umbilicus small.

Horizon and localities.—Lower Carboniferous, Chouteau limestone: Cooper county; Burlington limestone: Louisiana.

Goniatites planorbiformis Shumard.

Shell minute, volutions about six in number, broad, regularly rounded; umbilicus very broad.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Goniatites politus Shumard.

A very small, compressed form, with volutions embracing and showing only the outer whorl. Surface highly polished.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Lexington.

Goniatites minimus Shumard.

A very minute shell, similar to G. politus but much more robust.

Horizon and localities—Upper Carboniferous, Upper Coal Measures: Dover landing (Lafayette county), Kansas City.

Nautilus? burlingtonensis (Owen).

A large robust form with rapidly increasing whorls, and gently curving suture lines.
Horizon and localities.—Lower Carboniferous, Chouteau (Kinderhook) limestone: Sedalia.

Nautilus digonus Meek & Worthen.

A small form, with slender volutions, marked by longitudinal ribs and transverse lines.

Horizon and localities.—Lower Carboniferous, Kinderhook beds: Callaway county.

Nautilus spectabilis Meek & Worthen.

A large, robust form with smooth, rounded whorls.

Horizon and localities.—Lower Carboniferous, Kaskaskia limestone: St. Louis county (Hambach).

Nautilus ponderosus White.

Shell attaining a large size, subdiscoidal; umbilicus large, or nearly equaling the dorso-ventral diameter of the outer volution near the aperture; volutions three, enlarging their diameter more than three-fold each turn; all broader transversely than dorso-ventrally; inner ones slightly embracing, while the last one is apparently merely in contact with the others near the aperture; each broadly flattened or a little concave on the periphery, and (particularly the last one) somewhat flattened between the periphery and the middle of each side, from which point the sides are broadly rounded into the umbilicus, the greatest transverse diameter being near the middle; ventrolateral or outer angles of the last whorl (in somewhat worn casts), each provided with obscure traces of about twenty wide, undefined nodes, scarcely perceptible to the eye; septa numerous, rather closely arranged, making a slight backward
curve on each side, particularly between the middle and outer angles, and crossing the broadly flattened dorsum with a strong backward curve; surface with distinct lines of growth, which curve strongly backward like the septa, in crossing the outer side. (Meek.)

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Nautilus winslowi Meek & Worthen
Plate lvi, fig. 2.

A large robust form, with broad umbilicus and flattened periphery, toward the margins of which on each side is a row of prominent tubercles.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Lexington (Lafayette county.)

Nautilus forbesianus McC Chesney.
Plate lvi, figs. 4a-b.

Shell rather small, heavy; volutions rounded, with a series of prominent, distant nodes on each side toward the periphero-lateral border.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Nautilus occidentalis Swallow.

Shell rather above medium size, discoidal, with moderately wide, shallow umbilicus, in which is exposed nearly all of each of the inner whorls. Cross-section subquadrangular in outline, nearly flat dorsally and laterally, slightly concave ventrally. Nodes in six rows—one row on each side around the umbilicus, composed of small, depressed tubercles; a second series on each lateral angle of the periphery, of large prominent nodes; and the third, a double series around the periphery.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Nautilus missouriensis Swallow.

Plate lvii, fig. 3.

A small, smooth shell, probably an immature specimen of some other species.

Horizon and localities.—Upper Carboniferous, Lower Coal Measures: Boone county.

Metacoceras cavatiforme (Hyatt).

Metacoceras cavatiforme Miller, 1892: Geol. Sur. Indiana, 18th Ann. Rep., p. 72, pl. xi, figs. 5 and 7.

Shell medium size, of the N. sangamonense type, with a single row of nodes on each of the peripheral border.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.
Metaceras sangamonense (Meek & Worthen).

Shell like that of _N. occidentalis_ but less robust, the nodes also being less prominent, and the peripheral rows absent.

Horizon and localities. — Upper Carboniferous, Upper Coal Measures: Kansas City.

Lituites? complanatus Shumard.

Shell small, depressed, discoidal; sides very gently convex; volutions about four, not embracing, sloping from the ventral to the dorsal, which latter is subangulated; transverse section ovate; siphuncle small, dorsal; septa thin, concave, those of the last volution near the outer chamber scarcely more than one-half the width of those of the inner volutions. No surface markings are visible on any of the specimens under examination. (Shumard.)

Horizon and localities — Cambrian? magnesian limestone series: Ozark county.

Orthoceras chouteauense Swallow.

A small form, tapering moderately; septae distant.

Horizon and localities. — Lower Carboniferous, Chouteau (Kinderhook) limestone: Cooper county, Louisiana (Pike county).

Orthoceras chesterense Swallow.

A rapidly tapering form, with moderately distant septae.

Horizon and localities. — Lower Carboniferous, Kaskaskia limestone: Ste. Mary (Ste. Genevieve county).
Orthoceras rushense McChesney.

Plate lvi, fig. 6.

Orthoceras haris Miller, 1891: Geol. Sur. Indiana, 17th Ann. Rep., p. 87, pl. xvi, fig. 2

A small, slender form, with smooth surface.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Orthoceras occidentale Swallow.

A rather large form, often attaining a length of two feet or more, gradually tapering; septae quite concave; siphuncle eccentric.

Horizon and localities.—Upper Carboniferous, Upper Coal Measures: Kansas City.

Orthoceras ozarkensis Shumard.

Shell elongate, very gradually tapering to the apex; septae very thin, deeply concave, from nine to ten in the space of a quarter of an inch; external edge plane, and slightly sinuous; siphuncle marginal, transverse section reniform. Surface marked by annulations, oblique to the axis, the grooves between accommodating the edges of the septae. In some specimens the surface of the shell is marked with faint longitudinal striae. (Shumard.)

Horizon and localities.—Cambrian? Magnesian limestone: Ozark county.
Orthoceras arcuoliratum Hall.

A rather small species, cylindrical, with slightly raised undulatory ridges running obliquely around the shell, and finely lined in a longitudinal direction.

Horizon and localities. — Silurian, Trenton limestone: Louisiana.

Orthoceras jolietense Meek & Worthen.

Shell large, very long and slender, tapering rapidly, and with the septa very distant. Cross-section elliptic.

Horizon and localities. — Silurian, Niagara limestone: Grafton (Illinois).

Orthoceras medullare Hall.

Shell large, tapering gradually. Surface marked by prominent longitudinal ribs, crossed at regular intervals by transverse carinae, giving a beautifully cancellated effect.

Horizon and localities. — Silurian, Niagara dolomite: Grafton (Illinois).

Spurious and Doubtful Species.

Poterioceras missouriensis Miller, 1892: Geol. Sur. Indiana, 18th Ann. Rep., adv. sheets, p. 70, pl. xi, fig. 6. Probably a Phagmoceras, and in that case the specific name is preoccupied. This original specimen is an internal cast, and too imperfect to refer with certainty to its proper genus.
CHAPTER XV.

VERTEBRATES.

Cladodus elegans Newberry & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Cladodus ischyopus Newberry & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Cladodus eccentricus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Cladodus euglyphens St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Lambdodus costatus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville.
Lambdodus calceolus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: LaGrange (Lewis county).

Desmiodus? flabellum St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville.

Desmiodus? ligoniformis St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville.

Desmiodus costelliferus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Desmiodus tumidus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Venustodus tenuicristatus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: St. Francisville (Clark county), Boonville (Cooper county).
Harpacodus occidentalis St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Chomatodus parallelus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville (Cooper county).

Chomatodus incrassatus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Lisgodus curtus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville.

Lisgodus selluliformis St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Tanaodus prænuntius St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Tanaodus sculptus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.
Polyrhizodus williamsi St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville.

Polyrhizodus littoni Newberry & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Polyrhizodus amplus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Petalorhynchus distortus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Petalorhynchus pseudosagittatus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Peltodus quadratus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Psephodus latus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.
VERTEBRATES.

Vaticinodus? simplex St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Deltoptychius wachsmuthi St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville (Cooper county).

Deltoptychius expansus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Stenopterodus parvulus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Cochliodus obliquus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Cochliodus vanhornii St. John & Worthen.

Cochliodus vanhornii St. John & Worthen, 1883: Geol. Sur. Illinois, vol. VII, p. 120, pl. vii, figs. 1a-e.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Xystrodus imitatus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

G—17
Sandalodus lævissimus (Newberry & Worthen).

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville.

Sandalodus spatulatus Newberry & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Sandalodus crassus Newberry & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Orthopleurodus carbonarius (Newberry & Worthen).

Horizon and localities — Upper Carboniferous, Upper Coal Measures: Kansas City?
Pœcilodus sancti-ludovici St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Deltodus littoni Newberry & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boone county.

Deltodus cinctulus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Barrett (St. Louis county).

Deltodus parvus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Deltodopsis sancti-ludovici St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Psammodus plenus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Copodus vanhornii St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.
Ctenacanthus excavatus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: LaGrange (Lewis county).

Ctenacanthus keokuk St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville (Cooper county), LaGrange (Lewis county).

Ctenacanthus pugiunculus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Ctenacanthus gracillimus Newberry & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Asteroptychius sancti-ludovici St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Geisacanthus stellatus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.
VERTEBRATES.

Plysonemus parvulus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville (Cooper county).

Drepanacanthus reversus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Erismacanthus maccoyanus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Amacanthus gibbosus (Newberry & Worthen).

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Marracanthus rectus (Newberry & Worthen).

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Physonemus falcatus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.
Batacanthus baculiformis St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: LaGrange (Lewis county), St. Francisville (Clark county.)

Oracanthus vetustus Leidy.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Gampsacanthus latus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Keokuk limestone: Boonville (Cooper county.)

Gampsacanthus squamosus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Gampsacanthus typus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.

Lecracanthus unguiculus St. John & Worthen.

Horizon and localities.—Lower Carboniferous, Saint Louis limestone: Saint Louis.
Vertebrate Tracks.

Beside the remains of hard parts of vertebrates mentioned, it is of great interest to note the recent discovery of large numbers of vertebrate tracks in the shaly sandstones of the Upper Coal Measures at Kansas City. Quite a variety are represented. Most of them are small, none over three or four inches across, and the greater part of them not over a couple of inches in transverse measurement. In all respects they are very similar to the Connecticut valley tracks, only smaller. Full mention will be made of these footprints in another place.
SYNONYMIC INDEXICAL LIST OF THE FOSSILS OF MISSOURI.

BY CHARLES R. KEYES.

In the preparation of an index to the fossils of Missouri, it is the intention to put in form for ready reference a compact list of not only the valid species which have been found within the limits of the State, but also a list of the different names which have been, at various times, proposed for forms which are now known to belong to species previously described. In this way, all the fossils which have been reported from the region, no matter what name or names may have been assumed, may be referred to without difficulty under their proper titles. At the same time, the page is given where each species is considered in the report on the Paleontology of Missouri, where also additional references are given for an exhaustive study of the particular forms. The index, therefore, may be regarded as a systematic arrangement of all the terms which have been applied to the fossils occurring in Missouri. At the same time, it serves as a check-list for cataloguing purposes.

Acervulatia davidsoni, I, 104.
Acidaspis halli, I, 230.
Acidaspis hamata, I, 227.
Aclis minuta, II, 202.
Aclylacanthus occidentalis, II, 236.
G-18

Acervulatia davidsoni, I, 104.
Acidaspis halli, I, 230.
Acidaspis hamata, I, 227.
Aclis minuta, II, 202.
Aclisina minuta, II, 202.
Aclisina robusta, II, 202.
Aconyclys perrieri, II, 236.

Syn. Ctenacanthus gracilimus.
Acroculia ovalis, II, 180.
Syn. Capulus ovalis.
Actinocrinus aequalis, I, 179.
Syn. Batocrinus aequalis.
Actinocrinus aequalibrachiatius, I, 181.
Syn. Batocrinus aequalibrachiatius.
Actinocrinus aequalibrachiatius, var. aequalibrachiatius, I, 181.
Syn. Batocrinus aequalibrachiatius.
Actinocrinus araneolus, I, 194.
Syn. Steganocrinus araneolus.
Actinocrinus arrosus, I, 186.
Actinocrinus asterias, I, 189.
Syn. Actinocrinus verrucosus.
Actinocrinus astericus, I, 181.
Syn. Batocrinus æquibrachiatus.
Actinocrinus biturbinatus, I, 184.
Syn. Batocrinus biturbinatus.
Actinocrinus blairi, I, 189.
Syn. Actinocrinus glans.
Actinocrinus brevior, I, 187.
Actinocrinus brevicornis, I, 165.
Syn. Megistocrinus brevicornis.
Actinocrinus brevis, I, 167.
Syn. Agaricocrinus brevis.
Actinocrinus brittsi, I, 188.
Actinocrinus calyculoides, I, 177.
Syn. Eretmocrinus calyculoides.
Actinocrinus carica, I, 176.
Syn. Eretmocrinus carica.
Actinocrinus choris, I, 187.
Syn. Actinocrinus tenuepulptus.
Actinocrinus chouteausis, I, 169.
Syn. Steganocrinus concinnus.
Actinocrinus corybulus, I, 175.
Syn. Eretmocrinus corybulus.
Actinocrinus corniculus, I, 167.
Syn. Agaricocrinus brevis.
Actinocrinus cornigerus, I, 172.
Syn. Dorycrinus cornigerus.
Actinocrinus coronatus, I, 176.
Syn. Eretmocrinus coronatus.
Actinocrinus delicatus, I, 190.
Syn. Tellocrinus umbrosus.
Actinocrinus desideratus, I, 171.
Syn. Dorycrinus missouriensis.
Actinocrinus divergens, I, 172.
Syn. Dorycrinus cornigerus.
Actinocrinus divergens, I, 166.
Syn. Amphoraerinus divergens.
Actinocrinus dodecadactylus, I, 183.
Syn. Batocrinus dodecadactylus.
Actinocrinus doris, I, 179.
Syn. Batocrinus æqualis.
Actinocrinus erraticus, I, 187.
Syn. Actinocrinus thalia.
Actinocrinus eryx, I, 189.
Syn. Actinocrinus glans.
Actinocrinus enconus, I, 184.
Syn. Batocrinus enconus.
Actinocrinus evansi, I, 164.
Syn. Megistocrinus evansi.
Actinocrinus fossatus, I, 188.
Actinocrinus glans, I, 189.
Actinocrinus gouldi, I, 173.
Syn. Dorycrinus gouldi.
Actinocrinus hornatus, I, 179.
Syn. Batocrinus elypeatus.
Actinocrinus jugosus, I, 190.
Actinocrinus konincki, I, 178.
Syn. Eretmocrinus konincki.
Actinocrinus lagina, I, 185.
Syn. Actinocrinus proboscidialis.
Actinocrinus laura, I, 182.
Syn. Batocrinus laura.
Actinocrinus leucosia, I, 176.
Syn. Eretmocrinus leucosia.
Actinocrinus liratus, I, 191.
Syn. Tellocrinus liratus.
Actinocrinus lobatus, I, 190.
Actinocrinus longirostris, I, 180.
Syn. Batocrinus longirostris.
Actinocrinus lowi, I, 189.
Actinocrinus minor, I, 165.
Syn. Magistocrinus breviceornis.
Actinocrinus mississippiensis I, 174.
Syn. Dorycrinus mississippiensis.
Actinocrinus missouriensis, I, 171.
Syn. Dorycrinus missouriensis.
Actinocrinus multiradiatus, I, 188.
Actinocrinus nashville, I, 183.
Syn. Batocrinus nashville.
Actinocrinus nashville, var. subtructus, I, 183.
Syn. Batocrinus substuctus.
Actinocrinus nesius, I, 188.
Syn. Actinocrinus saltulus.
Actinocrinus nodosus, I, 187.
Syn. Actinocrinus thalia.
Actinocrinus ossatus, I, 187.
Actinocrinus oblatus, I, 192.
Syn. Batocrinus rotundus.
INDEXICAL LIST OF FOSSILS.

Actinoerinus ornatus, I, 192.
Syn. Physetocrinus ornatus.
Actinoerinus papillatus, I, 179.
Syn. Batoerinus clypeatus.
Actinoerinus parvus, I, 171.
Syn. Dorycrinus parvus.
Actinoerinus pendens, I, 169.
Syn. Dorycrinus unicorns.
Actinoerinus pentagonus, I, 195.
Syn. Steganoerinus pentagonus.
Actinoerinus pernodosus, I, 190.
Actinoerinus planobasalis, I, 186.
Syn. Amphoracerinus divergens.
Actinoerinus planodiscus, I, 184.
Syn. Batoerinus planodiscus.
Actinoerinus proboscidialis, I, 185.
Actinoerinus pyriformis, I, 182.
Syn. Batoerinus pyriformis.
Actinoerinus quadrispinus, I, 166.
Syn. Amphoracerinus divergens.
Actinoerinus quaternarius, I, 185.
Syn. Actinoerinus proboscidialis.
Actinoerinus quaternarius, var. spiniferus, I, 185.
Syn. Actinoerinus proboscidialis.
Actinoerinus quinquelobus, I, 172.
Syn. Dorycrinus cornigerus.
Actinoerinus regalis, I, 193.
Syn. Strotocerinus regalis.
Actinoerinus remibrachia, I, 178.
Syn. Eretmocerinus remibrachia.
Actinoerinus reticulatus, I, 186.
Actinoerinus rotundus, I, 182.
Syn. Batoerinus rotundus.
Actinoerinus seilius, I, 188.
Actinoerinus sculptus, I, 194.
Syn. Steganoerinus sculptus.
Actinoerinus sedaliensis, I, 225.
Doubtful.
Actinoerinus senarius, I, 192.
Syn. Physetocrinus ornatus.
Actinoerinus sillimani, I, 188.
Syn. Actinoerinus seilius.
Actinoerinus speciosus, I, 193.
Syn. Strotocerinus regalis.
Actinoerinus subaculeatus, I, 170.
Syn. Dorycrinus subaculeatus.
Actinoerinus subumbrosus, I, 191.
Syn. Telioerinus iratus.
Actinoerinus superlatus, I, 165.
Syn. Megistocerinus brevicorns.
Actinoerinus subventricosus, I, 192.
Syn. Physetocrinus ventricosus.
Actinoerinus subturbinatus, I, 171.
Syn. Dorycrinus parvus.
Actinoerinus symmetricus, I, 171.
Syn. Dorycrinus parvus.
Actinoerinus tenuisculptus, I, 187.
Actinoerinus thalla, I, 187.
Actinoerinus themis, I, 185.
Syn. Actinoerinus proboscidialis.
Actinoerinus tricornis, I, 169.
Syn. Dorycrinus unicorns.
Actinoerinus trinodus, I, 171.
Syn. Dorycrinus parvus.
Actinoerinus turbinatus, var. elegans, I 180.
Actinoerinus umbrosus, I, 190.
Syn. Telioerinus umbrosus.
Actinoerinus unicorns, I, 169.
Syn. Dorycrinus unicorns.
Actinoerinus uraeformis, I, 173.
Syn. Eretmocerinus koninckii.
Actinoerinus validus, I, 194.
Syn. Strotocerinus conelius.
Actinoerinus ventricosus, I, 192.
Syn. Physetocrinus ventricosus.
Actinoerinus verneuianus, I, 177
Syn. Eretmocerinus verneuianus
Actinoerinus verrucosus, I, 189.
Actinoerinus wachsmuthi, I, 188.
Syn. Actinoerinus seilius.
Actinoerinus whitei, I, 164.
Syn. Perieochocrinus whitei.
Actinotrypa peculiaris, II, 18.
Actinurus boltoni, I, 226.
Syn. Lichas boltoni.
Æsiocerinus basiliscus, I, 220.
Syn. Phialocrinus basiliscus.
Æsiocerinus haril, I, 219.
Syn. Phialocrinus haril.
Æsiocerinus magnificeus, I, 220.
Syn. Phialocrinus magnificeus.
Agaricoerinus americanus, I, 168.
Agaricocrinus blairi, I, 167.
Syn. Agaricocrinus planoconvexus.

Agaricocrinus brevis, I, 167.

Agaricocrinus bullatus, I, 168.
Syn. Agaricocrinus americanus.

Agaricocrinus chouteaensis, 167.
Syn. Agaricocrinus planoconvexus.

Agaricocrinus excavatus, I, 168.
Syn. Agaricocrinus americanus.

Agaricocrinus germanus, I, 167.
Syn. Agaricocrinus planoconvexus.

Agaricocrinus nodosus, I, 168.
Syn. Agaricocrinus americanus.

Agaricocrinus pentagonus, I, 167.

Agaricocrinus planoconvexus, I, 167.

Agaricocrinus tuberosus, I, 168.
Syn. Agaricocrinus americanus.

Agaricocrinus sampsoni, I, 167.
Syn. Agaricocrinus planoconvexus.

Agaricocrinus wortheni, I, 168.

Agassizocrinus dactyliformis, I, 221.

Agassizocrinus globosus, I, 216.
Syn. Cromyocrinus globosus.

Agelacrinus kaskaskiensis.
Syn. Echinodiscus kaskaskiensis.

Allorisma antiqua, II, 127.

Allorisma costata, II, 128.

Allorisma cuneata, II, 131.
Doubtful.

Allorisma ensiformis, II, 129.
Syn. Allorisma subcuneatum.

Allorisma granosum, II, 128.

Allorisma hannahiensis, II, 127.

Allorisma leavenworthensis, II, 131.
Syn. Chrenomya leavenworthensis.

Allorisma lata, II, 131.
Doubtful.

Allorisma marionensis, II, 127.

Allorisma minnehaha, II, 130.
Syn. Chrenomya minnehaha.

Allorisma subcuneatum, II, 129.

Allorisma topekaensis, II, 128.

Amacanthus gibbosus, II, 237.

Ambocella gemmula, II, 85.
Syn. Spirothera planoconvexus.

Ambocella minuta, II, 90.

Syn. Amplexus fragilis.

Syn. Amplexus fragilis.

Amplexus yandelli, 108.

Amphoracrinus americanus, I, 168.
Syn. Agaricocrinus americanus.

Amphoracrinus divergens, I, 166.

Amphoracrinus multiramosus, I, 166.
Syn. Amphoracrinus divergens.

Ancella hausmanni, II, 119.

Syn. Myalina swallowi.

Anisotrypa solida, II, 19.

Anomites punctatus, II, 51.
Syn. Productus punctatus.

Anomphalus rotulus, II, 154.

Area striata, II, 120.
Syn. Macrodont tenulistratus.

Archaeocidaris aculeata, I, 130.

Archaeocidaris agassizi, I, 127.

Archaeocidaris biangulata, I, 130.

Archaeocidaris dininnii, I, 130.

Archaeocidaris gracilis, I, 130.
Syn. Archaeocidaris aculeata.

Archaeocidaris hallianus, I, 129.

Archaeocidaris keokuk, I, 128.

Archaeocidaris megastylus, I, 129.

Archaeocidaris newberryi, I, 129.

Archaeocidaris norwoodi, I, 129.

Archaeocidaris shumardiana, I, 128.

Archaeocidaris verneuiliana, I, 130.
Syn. Archaeocidaris aculeata.

Archaeocidaris wortheni, I, 128.

Archimedes laxus, II, 27.

Archimedes owenanus, II, 26.

Archimedes reversa, II, 26.
Syn. Archimedes wortheni.

Archimedes swallowanus, II, 26.

Archimedes wortheni, II, 26.

Astartella concentrica, II, 126.

Astartella vera, II, 125.
<table>
<thead>
<tr>
<th>Geological Name</th>
<th>Page(s)</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asteropychius sancti-ludovici</td>
<td>II, 236</td>
<td></td>
</tr>
<tr>
<td>Astrae mammillaris</td>
<td>I, 106</td>
<td></td>
</tr>
<tr>
<td>Syn. Lithostrotion mammillare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athyris argentea</td>
<td>II, 92</td>
<td></td>
</tr>
<tr>
<td>Athyris differens</td>
<td>II, 93</td>
<td></td>
</tr>
<tr>
<td>Syn. Athyris argentea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athyris formosa</td>
<td>II, 91</td>
<td></td>
</tr>
<tr>
<td>Athyris hannibalis</td>
<td>II, 91</td>
<td></td>
</tr>
<tr>
<td>Athyris incrassatus</td>
<td>II, 91</td>
<td></td>
</tr>
<tr>
<td>Athyris proutii</td>
<td>II, 91</td>
<td></td>
</tr>
<tr>
<td>Athyris sublamellosa</td>
<td>II, 92</td>
<td></td>
</tr>
<tr>
<td>Athyris subquadrata</td>
<td>II, 92</td>
<td></td>
</tr>
<tr>
<td>Athyris trinuclea</td>
<td>II, 92</td>
<td></td>
</tr>
<tr>
<td>Athyris ultravarieca</td>
<td>II, 106</td>
<td>Doubtful</td>
</tr>
<tr>
<td>Athyris vittata</td>
<td>II, 90</td>
<td></td>
</tr>
<tr>
<td>Atrypa aspera</td>
<td>II, 97</td>
<td>Syn. Atrypa occidentalis</td>
</tr>
<tr>
<td>Atrypa capax</td>
<td>II, 99</td>
<td>Syn. Rhyncho nella capax</td>
</tr>
<tr>
<td>Atrypa dentata</td>
<td>II, 99</td>
<td>Syn. Rhyncho nella dentata</td>
</tr>
<tr>
<td>Atrypa increbescens</td>
<td>II, 99</td>
<td>Syn. Rhyncho nella capax</td>
</tr>
<tr>
<td>Atrypa levis</td>
<td>II, 104</td>
<td>Syn. Meristella levis</td>
</tr>
<tr>
<td>Atrypa modesta</td>
<td>II, 98</td>
<td>Syn. Zygospira modesta</td>
</tr>
<tr>
<td>Atrypa occidentalis</td>
<td>II, 97</td>
<td></td>
</tr>
<tr>
<td>Atrypa pecuarius</td>
<td>II, 104</td>
<td>Syn. Eationia pecuaria</td>
</tr>
<tr>
<td>Atrypa reticularis</td>
<td>II, 97</td>
<td></td>
</tr>
<tr>
<td>Aulopora gracilis</td>
<td>I, 123</td>
<td></td>
</tr>
<tr>
<td>Aviculo circulus</td>
<td>II, 109</td>
<td>Syn. Entolium circulus</td>
</tr>
<tr>
<td>Aviculo cooperensis</td>
<td>II, 109</td>
<td>Syn. Entolium cooperensis</td>
</tr>
<tr>
<td>Avicula longa</td>
<td>II, 113</td>
<td></td>
</tr>
<tr>
<td>Avicula magna</td>
<td>II, 110</td>
<td>Syn. Aviculopecten magna</td>
</tr>
<tr>
<td>Avicula pinnæformis</td>
<td>II, 115</td>
<td>Syn. Aviculopina americana</td>
</tr>
<tr>
<td>Aviculopecten carboniferus</td>
<td>II, 111</td>
<td></td>
</tr>
<tr>
<td>Aviculopecten coryanus</td>
<td>II, 113</td>
<td></td>
</tr>
<tr>
<td>Aviculopecten coxanus</td>
<td>II, 112</td>
<td></td>
</tr>
<tr>
<td>Aviculopecten fasciculatus</td>
<td>II, 113</td>
<td></td>
</tr>
<tr>
<td>Aviculopecten interlineatus</td>
<td>II, 112</td>
<td></td>
</tr>
<tr>
<td>Aviculopecten magna</td>
<td>II, 110</td>
<td></td>
</tr>
<tr>
<td>Aviculopecten missouriensis</td>
<td>II, 110</td>
<td></td>
</tr>
<tr>
<td>Aviculopecten neglectus</td>
<td>II, 115</td>
<td>Syn. Euchondria neglecta</td>
</tr>
<tr>
<td>Aviculopecten occidentalis</td>
<td>II, 110</td>
<td></td>
</tr>
<tr>
<td>Aviculopecten williamsi</td>
<td>II, 131</td>
<td>Doubtful</td>
</tr>
<tr>
<td>Aviculopina americana</td>
<td>II, 115</td>
<td></td>
</tr>
<tr>
<td>Axophyllum rude</td>
<td>I, 107</td>
<td></td>
</tr>
<tr>
<td>Bactropora simplex</td>
<td>II, 35</td>
<td></td>
</tr>
<tr>
<td>Barycrinus blairi</td>
<td>I, 209</td>
<td>Syn. Barycrinus hoveyi</td>
</tr>
<tr>
<td>Barycrinus boonvilensis</td>
<td>I, 225</td>
<td>Doubtful</td>
</tr>
<tr>
<td>Barycrinus hoveyi</td>
<td>I, 209</td>
<td></td>
</tr>
<tr>
<td>Barycrinus magnificeus</td>
<td>I, 210</td>
<td></td>
</tr>
<tr>
<td>Barycrinus meekanus</td>
<td>I, 211</td>
<td></td>
</tr>
<tr>
<td>Barycrinus rhombiferus</td>
<td>I, 210</td>
<td></td>
</tr>
<tr>
<td>Barycrinus spurius</td>
<td>I, 209</td>
<td></td>
</tr>
<tr>
<td>Barycrinus stellatus</td>
<td>I, 210</td>
<td></td>
</tr>
<tr>
<td>Batacanthus baculiformis</td>
<td>II, 238</td>
<td></td>
</tr>
<tr>
<td>Bathyurus conicus</td>
<td>I, 233</td>
<td>Syn. Ptychoporia conica</td>
</tr>
<tr>
<td>Batoecrinus æqualis</td>
<td>I, 179</td>
<td></td>
</tr>
<tr>
<td>Batoecrinus altiusculus</td>
<td>I, 181</td>
<td>Syn. Batoecrinus christyi</td>
</tr>
<tr>
<td>Batoecrinus aspratilis</td>
<td>I, 180</td>
<td>Syn. Batoecrinus eleyeatus</td>
</tr>
<tr>
<td>Batoecrinus biturbinatus</td>
<td>I, 194</td>
<td></td>
</tr>
<tr>
<td>Batoecrinus blairi</td>
<td>I, 180</td>
<td></td>
</tr>
<tr>
<td>Batoecrinus boonvilensis</td>
<td>I, 178</td>
<td>Syn. Eretmoecrinus originarius</td>
</tr>
<tr>
<td>Batoecrinus britsi</td>
<td>I, 183</td>
<td>Syn. Batoecrinus subtractus</td>
</tr>
<tr>
<td>Batoecrinus calvini</td>
<td>I, 183</td>
<td></td>
</tr>
<tr>
<td>Batoecrinus calyculeoides</td>
<td>I, 177</td>
<td>Syn. Eretmoecrinus calyculeoides</td>
</tr>
<tr>
<td>Batoecrinus carica</td>
<td>I, 176</td>
<td>Syn. Eretmoecrinus carica</td>
</tr>
<tr>
<td>Batoecrinus christyi</td>
<td>I, 181</td>
<td></td>
</tr>
<tr>
<td>Batoecrinus clyeatus</td>
<td>I, 179</td>
<td></td>
</tr>
<tr>
<td>Batoecrinus comparilis</td>
<td>I, 175</td>
<td>Syn. Eretmoecrinus corbulis</td>
</tr>
<tr>
<td>Batoecrinus corbulis</td>
<td>I, 175</td>
<td>Syn. Eretmoecrinus carbulis</td>
</tr>
<tr>
<td>Batoecrinus divalis</td>
<td>I, 184</td>
<td>Syn. Batoecrinus euneus</td>
</tr>
</tbody>
</table>

INDEXICAL LIST OF FOSSILS.
INDEXICAL LIST OF FOSSILS.

Bato crinus dod e cadactylus, I, 183.
Bato crinus doris, I, 179.
Syn. Bato crinus equalis.
Bato crinus eigenns, I, 180.
Bato crinus euconus, I, 184.
Bato crinus garybi, I, 178.
Syn. Eretmocrinus originarius.
Bato crinus gurleyi, I, 178.
Syn. Eretmocrinus originarius.
Bato crinus laura, I, 182.
Bato crinus lo-girostris, I, 180.
Bato crinus konineki, I, 178.
Syn. Eretmocrinus konineki.
Bato crinus medioeris, I, 178.
Syn. Eretmocrinus originarius.
Bato crinus nashville, I, 183.
Bato crinus nashville, var. sub-
tractus, I, 183.
Syn. Bato crinus subtractus.
Bato crinus rotundus, I, 182.
Bato crinus planodiscus, I, 184.
Bato crinus pulchellus, I, 184.
Bato crinus pyriformis, I, 182.
Bato crinus scyphus, I, 182.
Syn. Bato crinus laura.
Bato crinus subtractus, I, 183.
Bato crinus trochiscus, I, 181.
Bato crinus urniformis, I, 178.
Syn. Eretmocrinus konineki.
Bato crinus venustus, I, 184.
Syn. Bato crinus euconus.
Bato crinus verrneullianus, I, 177.
Syn. Eretmocrinus verrneullianus.
Batostomella nitidula, II, 14
Belemnoe crinus sampsoni, I, 207.
Bellerophon belius, II, 148.
Bellerophon bilabiatus, II, 147.
Bellerophon bilobatus, II, 147.
Bellerophon blaneyanus, II, 149.
Syn. Bellerophon urii.
Bellerophon carbonarius, II, 149.
Syn. Bellerophon urii.
Bellerophon crassus, II, 151.
Bellerophon inspeciosus, II, 152.
Syn. Bellerophon nodocarinatus.
Bellerophon interlineatus, II, 149.
Syn. Bellerophon montfortianus.
Bellerophon marcoanus, II, 148.
Bellerophon meekianus, II, 149.

Bellerophon montfortianus, II, 151.
Bellerophon nodocarinatus, II, 152.
Bellerophon panneus, II, 147.
Bellerophon perecarinatus, II, 153.
Bellerophon scissile, II, 216.
Doubtful.
Bellerophon stevensianus, II, 152.
Bellerophon subpapillosus, II, 149.
Syn. Bellerophon urii.
Bellerophon sublavis, II, 148.
Bellerophon tricarinatus, II, 152.
Syn. Bellerophon nodocarinatus.
Bellerophon urii, II, 149.
Bialoclinus arrosus, I, 188.
Syn. Actinocrinus arrosus.
Bialoclinus bullatus, I, 186.
Syn. Actinocrinus arrosus.
Bialoclinus trijugis, I, 174.
Syn. Gennanocrinus trijugis.
Bulimella bulliformis, II, 204.
Syn. Bulimopora bulliformis.
Bulimopora bulliformis, II, 204.
Bulimopora inornata, II, 205.

Calamopora favosa, I, 120.
Syn. Favosites favosa.
Calamopora hemispherica, I, 120.
Syn. Favosites hemispherica.
Calceocrinus daetlyus, I, 222.
Syn. Calceocrinus ventricosus.
Calceocrinus robustus, I, 222.
Syn. Calceocrinus tunicatus,
Calceocrinus tunicatus, I, 222.
Calceocrinus ventricosus, I, 222.
Callopora punctata, II, 13.
Syn. Leolecoma punctatum.
Calymene rugosa, I, 233.
Calymene senaria, I, 230.
Camarophoria globulina, II, 103.
Syn. Rhynchoella uta.
Camarophoria subtrigona, II, 102.
Syn. Rhynchoella subtrigona.
Camarophoria swallowiana, II, 103.
Syn. Rhynchoella uta.
CamereLLa calcifer, II, 99.
Campophyllum torquium, I, 107.
Capulus acutrostis, II, 190.
Syn. Orthonychia acutirostre.
Capulus biserialis, II, 177.
INDEXICAL LIST OF FOSSILS.

Capulus chesterensis, II, 191.
 Syn. Orthonychia chesterense.
Capulus cyrtolites, II, 188.
 Syn. Orthonychia cyrtolites.
Capulus equilateralis, II, 178.
Capulus formosus, II, 188.
 Syn. Orthonychia formosum.
Capulus fissurella, II, 186.
 Syn. Igoceras fissurella.
Capulus haliotoides, II, 174.
Capulus infundibulum, II, 181.
 Syn. Igoceras infundibulum.
Capulus latus, II, 176.
Capulus obliquus, II, 177.
Capulus ovalis, II, 174.
Capulus parvus, II, 179.
Capulus tribulosus, II, 175.
Capulus subsinuosus, II, 173.
 Cardinia occidentalis, II, 131.
 Doubtful.
Cardiomorpha missouriensis, II, 131.
Cardiomorpha triangulata, II, 131.
Cardium lexingtonense, II, 132.
 Doubtful.
Cerioecrinerus hemisphericus, I, 220.
Chenomya leavenworthensis, II, 131
Chenomya minnehaha, II, 130.
Chetetes milleporaceus, I, 123.
 Syn. Calceocerinus ventricosus.
 Cheirocrinus nodosus, I, 222.
 Syn. Calceocerinus ventricosus.
Cheirocrinus tumicatus, I, 222.
 Syn. Calceocerinus tumicatus.
Cheirocrinus ventricosus, I, 222.
 Syn. Calceocerinus ventricosus.
Cheirocrinus wachsmuthi, I, 222.
 Syn. Calceocerinus ventricosus.
Chromitzia tenuilineatum, II, 206.
 Syn. Loxonema tenuilineatum.
Chomatodus inerassatus, II, 231.
Chomatodus paralleus, II, 231.
Chonetes flemingi, II, 54
Chonetes geinitzianus, II, 55.
 Syn. Chonetes laevis.
Chonetes geniculatus, II, 53.
Chonetes gibara, II, 55.
 Syn. Chonetes laevis.
Chonetes granulifera, II, 56.
Chonetes illinoiensis, II, 53.
Chonetes laevis, II, 55.
Chonetes logani, II, 53.
 Syn. Chonetes illinoiensis.
Chonetes mesaloba, II, 53.
Chonetes millepunctatus, II, 54.
Chonetes mucronata, II, 56.
 Syn. Chonetes granulifera.
Chonetes ornata, II, 53.
Chonetes parva, II, 54.
 Syn. Chonetes flemingi.
Chonetes smithii, II, 56.
 Syn. Chonetes granulifera.
Chonetes verneulliana, II, 54.
 Syn. Chonetes flemingi.
Chonophyllum sedaliense, I, 116.
Cladodus eccentricus, II, 229.
Cladodus elegans, II, 229.
Cladodus euglypten, II, 229.
Cladodus ichyphus, II, 229.
 Cleistopora placenta, I, 119.
 Cleistopora typa, I, 119.
 Clidocephorus solenooides, II, 130.
 Syn. Selenopsis solenooides.
Clinopistha radiata, II, 124.
Clinopistha radiata, var. laevis, II, 124.
 Syn. Clinopistha radiata.
Cochliodus crassus, II, 234.
 Syn. Sandalodinus hevissimus.
Cochliodus obliquus, II, 233.
Cochliodus vanhornii, II, 233.
Codaster stelliformis, I, 141.
 Syn. Orophocrinus stelliformis.
Codonites campanulatus, I, 142.
 Syn. Orophocrinus campanulatus.
Codonites stelliformis, I, 141.
 Syn. Orophocrinus stelliformis.
Colpocaris chesterensis, II, 239.
Columnaria stellata, I, 116.
 Comarocystites obovicus, I, 132.
 Comarocystites shumardi, I, 132.
 Conchita rhomboidalis, II, 70.
 Syn. Plectambonites rhomboidalis.
Conocardium parrishii, II, 124.
Conopterium effusum, I, 118.
Conularia crustula, II, 219.
Conularia marionensis, II, 217.
INDEXICAL LIST OF FOSSILS.

Conularia missouriensis, II, 218.
Conularia osagensis, II, 218.
Conularia subcarbonaria, II, 218.
Conularia subulata, II, 218.
Conularia triplicata, II, 217.
Copodus vanhornii, II, 235.
Coscinium elegans, II, 21.
Syn. Glyptopora elegans.
Coscinium keyserlingi, II, 22.
Syn. Glyptopora keyserlingi.
Coscinium laminatum, II, 18.
Coscinium michelinia, II, 22.
Syn. Glytopora michelinia.
Coscinium plumosa, II, 20.
Syn. Glytopora plumosa.
Coscinium saginella, II, 21.
Syn. Glytopora saginella.
Cosinopora sulcata, I, 103.
Syn. Receptaculites oweni.
Crania laevis, II, 40.
Crenipecten retiferus, II, 108.
Syn. Lima retifera.
Cromyocrinus buttsi, I, 216.
Cromyocrinus globosus, I, 216.
Cromyocrinus kansasensis, I, 216.
Cryptoblastus kirkwoodensis, I, 139.
Cryptoblastus melo, I, 139.
Ctenacanthus excavatus, II, 236.
Ctenacanthus gracilimus, II, 236.
Ctenacanthus keokuk, II, 236.
Ctenacanthus pugnunculus, II, 236.
Cyclothecinum spongides, I, 208.
Cyclothecinum divaricatus, I, 207.
Syn. Cyathocrinus iowensis.
Cyclothecinum enormis, I, 208.
Cyclothecinum hoveyi, I, 209.
Syn. Barycrinus hoveyi.
Cyclothecinum intermedius, I, 207.
Syn. Paracrinus intermedius.
Cyclothecinum iowensis, I, 207.
Cyclothecinum magnoliiformis, I, 214.
Syn. Zeacrinus magnoliiformis.
Cyclothecinum malvacaeus, I, 207.
Syn. Cyathocrinus iowensis.
Cyclothecinum maniformis, I, 217.
Syn. Eupachycrinus maniformis.
Syn. Barycrinus stellatus.
Cyathocrinus sampsoni, I, 208.
Syn. Cyathocrinus iowensis.
Cyathocrinus spurus, I, 209.
Syn. Barycrinus spurus.
Syn. Barycrinus stellatus.
Cyathocrinus stillatetus, I, 219.
Syn. Phialocrinus stillatetus.
Cyathocrinus viminalis, I, 207.
Syn. Cyathocrinus iowensis.
Cyathophyllum cornicula, I, 105.
Cyathophyllum davidsoni, I, 104.
Syn. Acervularia davidsoni.
Cyathophyllum glabrum, I, 105.
Cyathophyllum torquatum, I, 105.
Syn. Campophyllum torquatum.
Cyathaxonia prolifera, I, 115.
Syn. Lophophyllum proliferum.
Cyclonema bilis, II, 154.
Cycloporella discoidae, II, 37.
Syn. Proutella disoidae.
Cycloporella expatiata, II, 37.
Cycloporella fungia, II, 36.
Cycloporella polymorpha, II, 15.
Syn. Stenoporella tuberculata.
Cycloporella perversa, II, 37.
Cycloporella spinifera, II, 37.
Cyphaspa girardeauensis, I, 228.
Cypricardia chouteausiensis, II, 132.
Doubtful.
Cypricardia occidentalis, II, 132.
Cypricardia pikensis, II, 132.
Doubtful.
Cypricardia plicatula, II, 132.
Doubtful.
Cypricardia wheeleri, II, 123.
Syn. Schizodus wheeleri.
Cypricardinella gorbyi, I, 132.
Doubtful.
Cyrtia acutirostris, II, 89.
Syn. Cyrtina acutirostris.
Cyrtia dalmatini, II, 89.
Syn. Cyrtina dalmatini.
Cyrtia missouriensis, II, 90.
Syn. Cyrtina umbonata.
Cyrtia occidentalis, II, 86.
Syn. Syringothyrus occidentalis.
Cyrtia umbonata, II, 90.
Syn. Cyrtina umbonata.
INDEXICAL LIST OF FOSSILS.

Cyrtilina acutirostris, II, 89.
Cyrtilina dalmani, II, 89.
Cyrtilina unbonata, II, 90.
Cystodictya americana, II, 17.
Cystodictya nitida, II, 17.
Cystodictya pustulosa, II, 17.
Cystophyllum americanum, I, 117.
Cythere sublaevus, I, 238.
Syn. Leperditia sublaevus.

Dalmania tridentifera, I, 229.
Syn. Dalmanites tridentifera.

Dalmanites tridentifera, I, 229.

Delthyris acutilirata, I, 66.
Syn. Platystrophia acutilirata.

Deltodopsis sancti-ludovici, II, 235.

Deltodus angularis, II, 234.
Syn. Orthopneustodus carbonarius.

Deltodus cinctulus, II, 235.

Deltodus grandis, I, 234.
Syn. Sandalodus laevissimus.

Deltodus littoni, II, 235.

Deltodus parvus, II, 235.

Deltodus rhomboideus, I, 235.

Deltotoechus expansus, II, 233.

Deltotoechus wachsmuthi, II, 233.

Dicalium meekianum, II, 133.

Dicalium missouriense, II, 133.

Dentalium primarium, II, 133.

Depranacanthus reversus, II, 237.

Desmiodes costelliferus, II, 230.

Desmiodes flavillum, II, 230.

Desmiodes ligiformis, II, 230.

Desmiodes tumidus, II, 230.

Dolocerus hemisphericus, I, 231.

Syn. Cerioerinus hemisphericus.

Dolocerus missouriensis, I, 221.

Syn. Cerioerinus hemisphericus.

Dielasma boidens, II, 105.

Syn. Terebratula boidens.

Dichocerus blairi, I, 205.

Dichocerus chesterensis, I, 206.

Syn. Pterotocerus chesterensis.

Dichocerus coxanus, I, 204.

Syn. Dichocerus fuscus.

Dichocerus fuscus, I, 204.

Dichocerus humbergi, I, 204.

Syn. Dichocerus fuscus.
Edmondia aspinwallensis, II, 126.
Edmondia burlingtonensis, II, 126.
Edmondia concentrica, II, 126.
E. Astartella concentrica.
Edmondia glabra, I, 127.
Edmondia marionensis, I, 132.
Doubtful.
Edmondia nuptialis, II, 126.
Edmondia radiata, II, 124.
Edrioocrinus pocilliformis, I, 220.
Encbordria neglcta, II, 115.
Encrina godoni, I, 136.
Encrinites Jlorealis, I, 136.
Endoceras elongatum, II, 220.
Endoceras proteiforme, var. elongatum, II, 220.
Syn. Endoceras elongatum.
Entolium aviculatum, II, 109.
Entolium circulus, II, 109.
Eocidaris hallianus, I, 139.
Syn. Archaeocidaris hallianus.
E. calyculoides, I, 173.
E. carica, I, 176.
E. coronatus, I, 176.
E. corbulis, I, 175.
E. depressus, I, 176.
E. expansus, I, 175.
E. konincki, I, 178.
E. leucosia, I, 176.
E. originarius, I, 178.
E. remibrachiatus, I, 178.
E. verneuilianus I, 177.
E. maceoyanus, II, 237.
E. pleuroviminus, I, 202.
E. deltoideus, I, 229.
E. peracuta, II, 205.
Eupachycrius harli, I, 218.
Eupachycrius magister, I, 218.
Eupachycrius maniformis, I, 217.
E. orbicularis, I, 217.
Eupachycrius spheralis, I, 218.
Syn. Eupachycrius magister.
Eupachycrius verrucosus, I, 217.
Enomphalus ammon, II, 158.
Syn. Straporollus ammon.
Enomphalus boonensis, II, 158.
Syn. Straporollus latus.
Enomphalus latus, II, 158.
Syn. Straporollus latus.
Enomphalus lens, II, 134
Syn. Pleurotomaria lens.
Syn. Straporollus obtusus.
Enomphalus pernodosus, II, 161.
Syn. Straporollus pernodosus.
Enomphalus perspectivus, II, 160.
Syn. Straporollus planidorsatus.
Enomphalus planidorsatus, II, 160.
Syn. Straporollus planidorsatus.
Enomphalus rugosus, II, 160.
Syn. Straporollus catilloides.
Enomphalus spargeniensis, II, 159.
Syn. Straporollus spargeniensis.
Syn. Omphalotrochus springvalensis, II, 162.
Syn. Omphalotrochus springvalensis.
Evactinopora grandis, II, 19.
Evactinopora radiata, II, 19.
Evactinopora sexradiata, II, 18.
Favistella stellata, I, 116.
Syn. Columbraria stellata.
Favosite coelenterata, I, 120.
Favosites hemisphaerica, I, 120.
Fenestella banyana, II, 23.
F. cestriensis, II, 23.
F. cingulata, II, 23.
F. elevatipora, II, 25.
F. fillistriata, II, 22.
F. flexuosa, II, 24.
F. funicula, II, 23.
F. hemitrypa, II, 23.
Syn. Hemitrypa hemitrypa.
F. limitaris, II, 23.
F. multispinosa, II, 23.
INDEXICAL LIST OF FOSSILS.

Fenestella rudis, II, 23.
Fenestella serrata, II, 23.
Fenestella shumardi, II, 24.
Fenestella tenax, II, 24.
Fenestra sancti-ludovici, II, 30.
Fistulipora carbonaria, II, 16.
Fistulipora clausa, II, 17.
 Syn. Meekopora clausa.
Fistulipora compressa, II, 16.
Fistulipora peculiaris, II, 18.
 Syn. Actinotrypa peculiaris.
Fistulipora trifolia, II, 18.
 Syn. Prismopora trifolia.
Flustra spatulata, II, 36.
 Syn. Worthenopora spatulata.
Flustra tuberculata, II, 15.
 Syn. Stenopora tuberculata.
Forbesiocrinus agassizi, I, 224.
 Syn. Forbesiocrinns agassizi.
Forbesiocrinus elegantulus, I, 223.
 Syn. Taxocrinus gidlingei.
Forbesiocrinus gidlingei, I, 223.
 Syn. Taxocrinus gidlingei.
Forbesiocrinus monroensis, I, 224.
 Syn. Onychocrinus monroensis.
Forbesiocrinus shumardianus, I, 224.
 Syn. Taxocrinus shumardianus.
Forbesiocrinus thiemi, I, 223.
 Syn. Taxocrinus thiemi.
Forbesiocrinus wortheni, I, 224.
Fusulina cylindrica, I, 102.
Fusus inabilis, II, 215.
 Syn. Sphaerodoma primogenia.
Gammaplanus squamosus, II, 238.
Gammaplanus typus, II, 238.
Gaurocrinus splendens, I, 162.
 Syn. Ptychoerinus splendens.
Geisacanthus stellatus, II, 236.
Gennacerin us trijugis, I, 174.
Gervilla auricula, II, 114.
 Syn. Monopteria longispina.
Gervilla longa, II, 113.
 Syn. Avicula longa.
Gervilla longispina, II, 114.
 Syn. Monopteria longispina.
Gilbertocrinus typus, I, 164.
Glaucosmea trilinata, II, 31.
 Syn. Pinnatopora trilinata.
Glyptocrinus limbriatus, I, 225.
 Doubtful.
Glyptocrinus fornshelli, I, 162.
Glyptopora elegans, II, 21.
Glyptopora keyserlingi, II, 22.
Glyptopora megastoma, II, 21.
Glyptopora michelinia, II, 22.
Glyptopora plumosa, II, 20.
Glyptopora sagenella, II, 21.
Goniatites gorbyi, II, 230.
Goniatites holmesi, II, 227.
 Doubtful.
Goniatites minutus, II, 221.
Goniatites morganensis, II, 227.
 Doubtful.
Goniatites osagensis, II, 221.
Goniatites planorbiformis, II, 221.
Goniatites politus, II, 221.
Gonioceras anceps, II, 220.
Grammysia blairi, II, 132.
 Doubtful.
Graphiocrinus carbonarius, I, 219.
 Syn. Phialoerinus carbonarius.
Graphoerinus daeulyi, I, 213.
 Syn. Scytaloerinus daeulyi.
Granatoerinus curtus, I, 140.
Granatoerinus melo, I, 139.
 Syn. Cryptoblastus melo.
Granatoerinus melo, var. projectus, I, 139.
 Syn. Granatoerinus neglctus.
 Syn. Schizoblastus melonoides.
Granatoerinus neglctus, I, 139.
Granatoerinus norwoodi, I, 140.
Granatoerinus projectus, I, 140.
Granatoerinus sayi, I, 138.
 Syn. Schizoblastus sayi.
Griffithides sedaliensis, I, 235.
 Syn. Phillipiza sedaliensis.
Gyroceras burlingtonensis, II, 221.
 Syn. Nautilus burlingtonensis.
INDEXICAL LIST OF FOSSILS.

Hadrophyllum glans, I, 116.
Harpacodus occidentalis, II, 231.
Helicopora archimediformis, II, 27.
 Syn. Archimedes laxus.
Hemipronites crassus, II, 68.
 Syn. Streptorhynchus crenistria.
Hemipronites lasiensis, II, 67.
 Syn. Streptorhynchus crenistria.
Hemitrypa aspera, II, 25.
Hemitrypa hemitrypa, II, 25.
Hemitrypa nodosa, II, 25.
Hemitrypa pateriformis, II, 26.
Hemitrypa proutana, II, 25.
 Syn. Hemitrypa hemitrypa.
Homacanthus gibbosus, II, 237.
 Syn. Amacanthus gibbosus.
Homacanthus rectus, II, 237.
 Syn. Marracanthus rectus.
Homotrypa arbuscula, I, 13.
Hydreionocrinus acanthophorus, I, 215.
 Syn. Eupachycrinus verrucosus.
Hydreionocrinus microspinus, I, 216.
Hydreionocrinus pentagonus, I, 215.
Hydreionocrinus verrucosus, I, 217.
 Syn. Eupachycrinus verrucosus.
Igoceras capulus, II, 183.
Igoceras fissurella, II, 186.
Igoceras pabulocrinus, II, 184.
Igoceras pyramidatum, II, 181.
Igoceras quineyense, II, 182.
Illuenus grafitonensis, I, 226.
Illemae insignis, I, 227.
Inachus catilloides, II, 160.
 Syn. Straparollus catilloides.
Isoedocinia curta, II, 132.
 Doubtful.
Koninekina americana, II, 103.
 Doubtful.
Lambdodus calceolus, II, 230.
Lambdodus costatus, II, 229.
Lecracanthus unguiculns, II, 239.
Lechythocerinus adamsi, I, 208.
 Syn. Lecythocerinus olivaeformis.
Lecythocerinus olivaeformis, I, 208.
Leda bellistriata, II, 122.
 Syn. Nuculana bellistriata.
 Leda subsecula, II, 123.
 Syn. Yodia subsecula.
Leioceloma araneum, II, 14.
Leioceloma foliatum, II, 14.
Leioceloma gracilium, II, 13.
Leioceloma punctatum, II, 13.
Leperditia sublevis, I, 239.
Leptacanthus occidentalis, II, 236.
 Syn. Ctenacanthus gracilimus.
Leptaea alternata, II, 70.
 Syn. Strophomena alternata.
Leptaea filitexta, I, 67.
 Syn. Streptorhynchus filitexta.
Leptaea mesacosta, II, 76.
Leptaea planumbona, II, 73.
 Syn. Strophomena planumbona.
Leptaea sericea, II, 75.
Leptaea subplanum, II, 67.
 Syn. Streptorhynchus subplanum
Leptocelilia imbricata, II, 98.
 Syn. Trematospira imbricata.
Leptodomus granosus, II, 128.
 Syn. Allorisma granosum.
Leptodomus topekaensis, II, 128.
 Syn. Allorisma topekaensis.
Leptopora gorbyi, I, 119.
 Syn. Cleistopora typa.
Leptopora typa, I, 119.
 Syn. Cleistopora typa.
 Lichas boltoti, I, 226.
Limna retifera, II, 108.
Lingula carbonaria, II, 38.
 Syn. Lingula umbonata.
Lingula mytiloides, II, 38.
 Syn. Lingula umbonata.
 Lingula umbonata, II, 38.
 Linguella lamborni, II, 38.
 Lisgodus curtus, II, 231.
 Lisgodus selluliformis, II, 231.
 Lithophaga pertenu's, II, 117.
Lithostrotion basaltiforme, I, 106.
 Syn. Lithostrotion mamillare.
 Lithostrotion mamillare, I, 106.
 Lithostrotion proliferum, I, 106.
 Syn. Lithostrotion mamillare.
INDEXICAL LIST OF FOSSILS.

Littorina wheeleri, II, 200.
Syn. Trachydomia wheeleri.
Lituites complanata, II, 225.
Lophophyllum calceola, I, 110.
Syn. Zaphrentis calceola.
Lophophyllum proliferum, I, 115.
Loxonema inornata, II, 205.
Syn. Bulimorpha inornata.
Loxonema multicostata, II, 206.
Loxonema newberryi, II, 212.
Syn. Soleniscus newberryi.
Loxonema rugosum, II, 206.
Syn. Loxonema sectulum.
Loxonema sectulum, II, 206.
Loxonema tenuilineatum, II, 206.
Lyropora divergens, II, 28.
Lyropora quincuncialis, II, 27.
Lyropora retrosa, II, 27.
Lyropora subquadrans, II, 27.

Maclurea magna, II, 163.
Maclurites magna, II, 163.
Syn. Maclurea magna
Macrochilina gracilis, II, 211.
Syn. Soleniscus gracilis.
Macrochilina littonana, II, 214.
Syn. Sphærodoma littonana.
Macrochilina missouriensis, II, 211.
Syn. Soleniscus missouriensis.
Macrochilina newberryi.
Syn. Soleniscus newberryi.
Macrochilina penguïs, II, 213.
Syn. Sphærodoma penguïs.
Macrochilus blairi, II, 218.
Doubtful.
Syn. Soleniscus cooperensis.
Syn. Sphærodoma primogenium.
Macrochilus intercalare, II, 215.
Syn. Sphærodoma medialis.
Macrochilus littonanum, II, 214.
Syn. Sphærodoma littonana.
Macrochilus mediale, II, 215.
Syn. Sphærodoma medialis.
Macrochilus missouriensis, II, 211.
Syn. Soleniscus missouriensis.
Macrochilus newberryi, II, 212.
Syn. Soleniscus newberryi.

Macrochilus paludinaeformis, II, 211.
Syn. Soleniscus paludinaeformis.
Macrochilus penguïs, II, 213.
Syn. Sphærodoma penguïs.
Macrochilus primogenium, II, 215.
Syn. Sphærodoma primogenium.
Macrochilus ponderosum, II, 213.
Syn. Sphærodoma ponderosa.
Macrochilus pulchellum, II, 215.
Syn. Sphærodoma medialis.
Macrochilus spiratus, II, 215.
Syn. Sphærodoma medialis.
Macrochilis texanum, II, 213.
Syn. Sphærodoma ponderosa.
Macrochilus ventricosum, II, 212.
Syn. Soleniscus brevis.
Macrodon micronecna, II, 163.
Doubtful.
Macrodon obsoletus, II, 120.
Macrodon sangamonensis, II, 121.
Macrodon tenuistriatus, II, 120.
Marracanthus rectus, II, 237.
Martinia planconvexa, II, 55.
Syn. Spirifera planconvexa.
Meekella striatocosta, II, 68.
Meekopora approximata, II, 16.
Meekopora clausa, II, 17.
Megistocrinus breviori, I, 165.
Megistocrinus evansi, I, 165.
Megistocrinus parvirostris, I, 165.
Syn. Megistocrinus evansi.
Megistocrinus plensus, I, 165.
Syn. Megistocrinus evansi.
Megistocrinus whitei, I, 164.
Syn. Periecbocrinus whitei.
Melonites crassus, I, 125.
Melonites danæ, I, 126.
Syn. Oligoporus danæ.
Melonites irregularis, I, 123.
Syn. Melonites multipora.
Melonites multiforma, I, 125.
Syn. Meristella laevis.
Merristella laevis, II, 104.
Syn. Meristella laevis.
Metablastus bipyramidalis, I, 137.
Metablastus lineatus, I, 136.
Metablastus wortheni, I, 137.
Metaceras sangamonense, II, 225.
Metacoceras cavatiforme, II, 224.
INDEXICAL LIST OF FOSSILS.

Metoptoma umbella, II, 183.
 Syn. Igoceras capulus.
Michelinia placenta, I, 119.
 Syn. Cleistopora placenta.
Microcyclus blairi, I, 117.
Missouricrinus dmonitus, I, 225.
 Doubtful.
Monopteria gibbosa, II, 114.
Monopteria longspina, II, 114.
Monotis gregaria, II, 114.
Murchisonia bellicineta, II, 145.
 Syn. Murchisonia major.
Murchisonia bicineta, II, 145.
 Syn. Murchisonia carinifera.
Murchisonia carinifera, II, 145.
Murchisonia gracilis, II, 146.
Murchisonia major, II, 145.
Murchisonia melaniaformis, II, 145.
Murchisonia milleri, II, 145.
 Syn. Murchisonia carinifera.
 Syn. Aelsina minuta.
Murchisonia ozarkensis, II, 216.
 Doubtful.
Murchisonia terebra, II, 146.
Myalina angulata, II, 118.
Myalina kansasensis, II, 117.
Myalina keokuk, II, 117.
Myalina perattenuata, II, 118.
Myalina recurvirostris, II, 117.
Myalina sancti-ludovoci, II, 117.
Myalina subquadrata, II, 118.
Myalina swallowi, II, 119.

Natica altonensis, II, 199.
 Syn. Naticopsis ventricosa.
Natica carleyana, II, 196.
 Syn. Strophostylus carleyana.
Natica littonana, II, 214.
 Syn. Spharodoma littonana.
Natica shumardi, II, 199.
 Syn. Naticopsis ventricosa.
Natica ventricia, II, 199.
 Syn. Naticopsis ventricosa.
Naticopsis altonensis, var. gigan-
tea, II, 199.
 Syn. Naticopsis ventricosa.
Naticopsis carleyana, II, 196.
 Syn. Strophostylus carleyana.
Naticopsis hollidayi, II, 291.
 Syn. Trachydomia nodosum.
Naticopsis littonana, II, 214.
 Syn. Spharodoma littonana.
Naticopsis littonana, var. genevi-
ensis, II, 214.
 Syn. Spharodoma littonana.
Naticopsis magister, II, 199.
 Syn. Naticopsis ventricosa.
Naticopsis monilifera, II, 144.
 Syn. Pleurotomaria monilifera.
Naticopsis nana, II, 196.
 Syn. Strophostylus nana.
Naticopsis nodosa, II, 201.
 Syn. Trachydomia nodosum.
Naticopsis nodosa, var. hollidayi,
II, 201.
 Syn. Trachydomia nodosum.
Naticopsis pricei, II, 199.
 Syn. Naticopsis ventricosa.
Naticopsis remex, II, 197.
 Syn. Strophostylus remex.
Naticopsis ventricosa, II, 199.
Naticopsis wheeleri, II, 200.
 Syn. Trachydomia wheeleri.
Nautilus biserialis, II, 224.
 Syn. Nautilus occidentalis.
Nautilus burlingtonensis, II, 221.
Nautilus capax, II, 227.
 Doubtful.
Nautilus digonus, II, 223.
Nautilus forbesianus, II, 223.
Nautilus gigipini, II, 227.
 Doubtful.
Nautilus lawsi, II, 228.
 Doubtful.
Nautilus missouriences, II, 224.
Nautilus nodocarinatus, II, 224.
 Syn. Nautilus occidentalis.
Nautilus occidentalis, II, 224.
Nautilus peramplus, II, 222.
 Syn. Nautilus spectabilis.
Nautilus ponderosus, II, 222.
Nautilus quadrangularis, II, 224.
 Syn. Nautilus occidentalis.
Nautilus sangamonensis, II, 225.
 Syn. Metaceras sangamonense.
Nautilus spectabilis, II, 222.
Nautilus winslowi, II, 223.
INDEXICAL LIST OF FOSSILS.

Nucleospira pisiformis, II, 94.
Nucula kazanensis, II, 122.
Syn. Nuculana bellistrata.
Nucula parva, II, 121.
Nucula ventricosa, II, 121.
Nuculana bellistrata, II, 122.

Oligoporus danæ, I, 126.
Oligoporus mutatus, I, 126.
Oligoporus parvus, I, 127.
Oliacrinus typus, I, 164
syn. Gilberstoecrinus typus.
Omphalotrochus springvalensis, I, 162.
Onychaster asper, I, 131.
Onychoerinus monroensis, I, 224.
Ophileta compacta, II, 162.
Oracanthus consimilis, II, 238.
Syn. Oracanthus vetustus.
Oracanthus vestustus, II, 238.
Oribcula nitida, II, 39.
Syn. Discina nitida.
Orophocrinus campanulatus, I, 142.
Orophocrinus stelliformis, I, 141.
Orophocrinus stelliformis, var. campanulatus, I, 142.
Syn. Orthis campanulatus.
Orthis acutilirata, II, 66.
Syn. Platystrophia acutilirata.
Orthis burlingtonensis, II, 63.
Orthis carbonaria, II, 64.
Syn. Orthis pecosii.
Orthis clarkensis, II, 63.
Syn. Orthis swallowi.
Orthis cooperensis, II, 64.
Syn. Orthis dubia.
Orthis crenistria, II, 68.
Syn. Streptorhynchus crenistria.
Orthis dubia, II, 64.
Orthis emacera, II, 58.
Orthis fissicosta, II, 57.
Orthis iowensis, II, 62.
Orthis keokuk, II, 63.
Orthis lasallenis, II, 67.
Syn. Streptorhynchus crenistria.
Orthis lynx, II, 64.
Syn. Platystrophia lynx.
Orthis michelina var. burlingtonensis, II, 63.
Syn. Orthis burlingtonensis.
Orthis missouriensis, II, 63.
Syn. Orthis burlingtonensis.
Orthis occidentalis, II, 57.
Orthis pecosii, II, 64.
Orthis pratteni, II, 106.
Doubtful.
Orthis richmonda, II, 68.
Syn. Streptorhynchus crenistria.
Orthis striatocostata, II, 69.
Syn. Meekella striatocostata.
Orthis subcarinata, II, 62.
Orthis subquadrata, II, 60.
Orthis swallowi, II, 63.
Orthis thiemel, II, 63.
Syn. Orthis burlingtonensis.
Orthis tricenaria, II, 60.
Orthisina crassa, II, 67.
Syn. Streptorhynchus crenistria.
Orthisina missouriensis, II, 68.
Syn. Meekella striatocostata.
Orthisina occidentalis, II, 69.
Syn. Meekella striatocostata.
Orthisina robusta, II, 67.
Syn. Streptorhynchus crenistria.
Orthisina shumardiana, II, 68.
Syn. Meekella striatocostata.
Orthoceras arcomilatum, II, 227.
Orthoceras chemungense, II, 228.
Doubtful.
Orthoceras chesterense, II, 225.
Orthoceras cheuteauense, II, 225.
Orthoceras colletti, II, 226.
Syn. Orthoceras occidentale.
Orthoceras harri, II, 226.
Syn. Orthoceras rushense.
Orthoceras jolietense, II, 227.
Orthoceras medullare, II, 227.
Orthoceras occidentale, II, 226.
Orthoceras ozarkensis, II, 226.
Orthoceras rushense, II, 226.
Orthoceras striatinaeum, II, 227.
Syn. Orthoceras medullare.
Orthonychia acutirostre, II, 190.
Orthonychia boonwilleense, I, 189.
Orthonychia chesterense, II, 191.
Orthonychia cyrtolites, II, 188.
Orthonychia formosum, II, 189.
Orthonychia spirale, II, 188.
Orthopleurodus carbonarius, II, 234.
INDEXICAL LIST OF FOSSILS.

Palaeacis compressa, I, 119.
 Syn. Palaeacis obtusa.
Palaeacis enormis, I, 118.
Paradoxides boltoni, I, 226.
 Syn. Lichas boltoni
Parisocrinus intermedius, I, 207.
Pecten aviculatus, II, 109.
 Syn. Entolium aviculatum.
Pecten broadheadi, II, 110.
 Syn. Aviculopecten carboniferus.
Pecten carboniferus, II, 111.
 Syn. Aviculopecten occidentalis.
Pecten cleavelandicus, II, 110.
 Syn. Aviculopecten occidentalis.
Pecten hawni, II, 110.
 Syn. Aviculopecten carboniferus.
Pecten missouriensis, II, 110.
 Syn. Aviculopecten missouriensis.
Pecten neglectus, II, 115.
 Syn. Enchondria neglecta.
Pecten occidentalis, II, 110.
 Syn. Aviculopecten occidentalis.
Peltodus quadratus, II, 232.
Pentamerus salinensis, II, 104.
Pentatrematites sulcatus, I, 135.
 Syn. Pentremites sulcatus.
Pentremites bipyramidalis, I, 137.
 Syn. Metablastus bipyramidalis.
Pentremites conoideus, I, 134.
Pentremites curtus, I, 140.
 Syn. Granatoecrinus curtus.
Pentremites elongatus, I, 133.
Pentremites godoni, I, 136.
Pentremites koninecanus, I, 135.
Pentremites lineatus, I, 136.
 Syn. Metablastus lineatus.
Pentremites melo, I, 139.
 Syn. Cryptoblastus melo.
Pentremites missouriensis, I, 135.
 Syn. Pentremites sulcatus.
Pentremites norwoodi, I, 140.
 Syn. Granatoecrinus norwoodi.
Pentremites obsesus, I, 135.
Pentremites potteri, I, 138.
 Syn. Schizoblastus sayi.
Pentremites roemeri, I, 137.
 Syn. Schizoblastus roemeri.
Pentremites sampsoni, I, 137.
 Syn. Schizoblastus roemeri.
Pentremites sayi, I, 138.
 Syn. Schizoblastus sayi.
Pentremites steiliformis, I, 141.
 Syn. Orophocrinus steiliformis.
Pentremites sulcatus, I, 135.
Pentremites symmetricus, I, 135.
 Syn. Pentremites pyriformis.
Pentremites varsiaviensis, I, 137.
 Syn. Metablastus wortheni.
Pentremites wortheni, I, 137.
 Syn. Metablastus wortheni.
Perieocrinus whitei, I, 164.
Pernopecten sedaliensis, II, 132.
 Doubtful.
Petalorhynchus distortus, II, 232.
Petalorhynchus pseudosagitatus, II, 232.
Phaceopora pertenella, II, 13.
Phaethonides immaturus, I, 238.
 Syn. Phillipsia immaturus.
Phaethonides sedaliensis, I, 235.
 Syn. Phillipsia sedaliensis.
Phanerotinus paradoxus, II, 164.
Phialocrinus barydactylus, I, 220.
Phialocrinus basiliscus, I, 220.
Phialocrinus carbonarius, I, 219.
Phialocrinus harrii, I, 219.
Phialocrinus magnificus, I, 220.
Phialocrinus stillativus, I, 219.
Phillipsia immaturus, I, 238.
Phillipsia major, I, 238.
Phillipsia meramecensis, I, 235.
Phillipsia missouriensis, I, 235.
Phillipsia portlockii, I, 236.
Phillipsia sampsoni, I, 235.
Phillipsia sedaliensis, I, 235.
Phillipsia shumardi, I, 233.
 Syn. Proetes missouriensis.
Phillipsia tuberculata, I, 235.
Phragmoceras missouriensis, II, 220
Physetocrinus ornatus, I, 192.
Physetocrinus ventricosus, I, 192.
Physonemus falcatus, II, 237.
Pileopis pabulocrinus, II, 184.
 Syn. Igoceras pabulocrinus.
Pinna missouriensis, II, 116.
Pinna peracuta, II, 116.
Pinnatopora conferta, II, 31.
Pinnatopora trilineata, II, 31.
INDEXICAL LIST OF FOSSILS.

Pinnatopora vinei, II, 31.
Pinnatopora youngi, II, 31.
Placunopsis carbonaria, II, 108.
Platyceras acutirostre, II, 190.
Syn. Orthonychia acutirostre.
Platyceras biseriatus, II, 177.
Syn. Capulus biseriatus.
Platyceras boonviliense, II, 189.
Syn. Orthonychia boonviliense.
Platyceras capulus, II, 183.
Syn. Igoceras capulus.
Platyceras chesterense, II, 191.
Syn. Orthonychia chesterense.
Platyceras cyrtolites, II, 188.
Syn. Orthonychia cyrtolites.
Platyceras equilatera, II, 178.
Syn. Capulus equilateralis.
Platyceras extinctor, II, 184.
Syn. Igoceras pabulocrinus.
Platyceras fissurella, II, 186.
Syn. Igoceras fissurella.
Platyceras formosum, II, 189.
Syn. Orthonychia formosum.
Platyceras haliotoides, II, 174.
Syn. Capulus haliotoides.
Platyceras infundibulum, II, 184.
Syn. Igoceras pabulocrinus.
Platyceras lævigatum, II, 180.
Syn. Capulus ovalis.
Platyceras latum, II, 176.
Syn. Capulus latus.
Platyceras missouriensis, II, 182.
Syn. Igoceras quincyense.
Platyceras nasutum, II, 175.
Syn. Capulus paralus.
Platyceras nebrascense, II, 180.
Syn. Capulus parvus.
Platyceras obliquum, II, 177.
Syn. Capulus obliquus.
Platyceras paralium, II, 174.
Syn. Capulus paralus.
Platyceras pettensiense, II, 182.
Syn. Igoceras quincyense.
Platyceras pyramidatum, II, 181.
Syn. Igoceras pyramidatum.
Platyceras quincyense, II, 182.
Syn. Igoceras quincyense.
Platyceras reversum, II, 195.
Syn. Strophostylus reversus.
Platyceras spirale, II, 188.
Syn. Orthonychia spirale.
Platyceras subrectum, II, 184.
Syn. Igoceras pabulocrinus.
Platyceras subsinuatum, II, 173.
Syn. Capulus subsinuatus.
Platyceras subundatum, II, 173.
Syn. Capulus subsinuatus.
Platyceras tribulosum, II, 175.
Syn. Capulus tribulosus.
Platyceras uncum, II, 190.
Syn. Orthonychia acutirostre.
Platycrinus acclivus, I, 198.
Syn. Platycrinus planus.
Platycerinus absentivus, I, 196.
Platycerinus æqualis, I, 200.
Platycerinus æquilateralis, I, 196.
Platycerinus æqualis externalis, I, 201.
Syn. Platycerinus bonoensis.
Platycerinus allophylus, I, 196.
Platycerinus amabilis, I, 199.
Syn. Platycerinus americanus.
Platycerinus americanus, I, 199.
Platycerinus annosus, I, 196.
Platycerinus batiola, I, 200.
Syn. Platycerinus æqualis.
Platycerinus blairi, I, 225.
Doubtful.
Platycerinus bonoensis, I, 201.
Platycerinus boonvillensis, I, 202.
Platycerinus brittsi, I, 195.
Platycerinus broadheadi, I, 195.
Syn. Platycerinus americanus.
Platycerinus burlingtonensis, I, 200.
Platycerinus carchesium, I, 198.
Syn. Platycerinus pileiformis.
Platycerinus cavus, I, 197.
Syn. Platycerinus discoideus.
Platycerinus chouteauensis, I, 225.
Doubtful.
Platycerinus colletti, I, 225.
Doubtful.
Platycerinus concinnus, I, 225.
Doubtful.
Platycerinus discoideus, I, 197.
Platycerinus excavatus, I, 197.
Syn. Platycerinus discoideus.
Platycerinus exsultus, I, 200
Syn. Platycerinus burlingtonensis.
INDEXICAL LIST OF FOSSILS.

Platycrinus gorbyi, I, 187.
Syn. Platycrinus discoideus.
Platycrinus halli, I, 201.
Platycrinus inornatus, I, 200.
Syn. Platycrinus burlingtonensis.
Platycrinus lautus, I, 200.
Platycrinus multibrachiatus, I, 197.
Syn. Platycrinus discoideus.
Platycrinus occidentalis, I, 197.
Syn. Platycrinus subspinosus.
Platycrinus ollicula, I, 195.
Platycrinus pentagonus, I, 225.
Doubtful.
Platycrinus pileiformis, I, 198.
Platycrinus planus, I, 198.
Platycrinus pieuroviminus, I, 202.
Platycrinus prrenuntius, I, 198.
Platycrinus pratteni, I, 198.
Platycrinus pulchellus, I, 197.
Syn. Platycrinus discoideus.
Platycrinus rotundus, I, 200.
Syn. Platycrinus sculptus.
Platycrinus saffordi, I, 202.
Platycrinus sampsoni, I, 199.
Platycrinus sarei, I, 202.
Platycrinus sculptus, I, 200.
Platycrinus subspinosus, I, 197.
Platycrinus sulcatus, I, 198.
Syn. Platycrinus prennuntius.
Platycrinus truncatus, I, 199.
Syn. Platycrinus americanus.
Platynatus boltini, I, 226.
Syn. Lichas boltini.
Platystoma broadheadi, II, 174.
Syn. Capulus hallioides.
Platystoma nana, II, 196.
Syn. Strophostylus nana.
Platystoma peoriense, II, 133.
Syn. Strophostylus peoriensis.
Platystomaria brazoensis, II, 143.
Pleurotomaria broadheadi, II, 144.
Pleurotomaria coniformis, II, 138.
Pleurotomaria conoides, II, 138.
Syn. Pleurotomaria coniformis.
Pleurotomaria corona, II, 141.
Syn. Pleurotomaria sphærulata.
Pleurotomaria coxana, II, 136.
Pleurotomaria depressa, II, 139.
Syn. Pleurotomaria illinoensis.
Pleurotomaria grayvillensis, II, 141.
Pleurotomaria harrii, II, 138.
Syn. Pleurotomaria carbonaria.
Pleurotomaria illinoensis, II, 139.
Pleurotomaria kentuckensis, II, 139.
Syn. Pleurotomaria illinoensis.
Pleurotomaria lenticularis, II, 163.
Syn. Raphistoma lenticularis.
Pleurotomaria lens, II, 134.
Pleurotomaria missouriensis, II, 136.
Pleurotomaria modesta, II, 139.
Syn. Pleurotomaria illinoensis.
Pleurotomaria monilifera, II, 144.
Pleurotomaria montezuma, II, 134.
Pleurotomaria pernumerosa, II, 140.
Pleurotomaria sediliensis, II, 134.
Pleurotomaria speciosa, II, 137.
Pleurotomaria sphærulata, II, 141.
Pleurotomaria" subcarbonaria, II, 135.
Pleurotomaria subsclaris, II, 136.
Pleurotomaria tabulata, II, 142.
Pleurotomaria turbiniformis, II, 135.
Pleurotomaria umbilicata, II, 155.
Syn. Trochonema umbilicata.
Pleurotomaria valvatiformis, II, 137.
Plicatula striatocostata, II, 138.
Syn. Meekella striatocostata.
Plisoneimus parvulus, II, 237.
Pocilodus sancti-ludovici, II, 235.
Polyphemopsis bulliformis, II, 204.
Syn. Bullomorpha bulliformis.
Polyphemopsis inornata, II, 205.
Syn. Bullomorpha inornata.
Polyphemopsis peracuta, II, 205.
Syn. Fulima peracuta.
Polypora biseriata, II, 29.
Polypora cestriensis, II, 29.
Polypora corticea, II, 30.
<table>
<thead>
<tr>
<th>Indexical List of Fossils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypora gracilis, II, 28.</td>
</tr>
<tr>
<td>Polypora halliana, II, 28.</td>
</tr>
<tr>
<td>Polypora maccroyana, II, 28.</td>
</tr>
<tr>
<td>Polypora marginata, II, 30.</td>
</tr>
<tr>
<td>Syn. Polypora submarginata.</td>
</tr>
<tr>
<td>Polypora radialis, II, 29.</td>
</tr>
<tr>
<td>Polypora retroza, II, 29.</td>
</tr>
<tr>
<td>Polypora simulatrix, II, 28.</td>
</tr>
<tr>
<td>Polypora spininodata, II, 30.</td>
</tr>
<tr>
<td>Polypora spinulifera, II, 30.</td>
</tr>
<tr>
<td>Polypora submarginata, II, 30.</td>
</tr>
<tr>
<td>Polypora tuberculata, II, 30.</td>
</tr>
<tr>
<td>Polypora varsoviensis, II, 29.</td>
</tr>
<tr>
<td>Polyrhizodus ampilus, II, 232.</td>
</tr>
<tr>
<td>Polyrhizodus littoni, II, 232.</td>
</tr>
<tr>
<td>Polyrhizodus williamsi, II, 232.</td>
</tr>
<tr>
<td>Porcellia nodosa, I, 154.</td>
</tr>
<tr>
<td>Poterioocrinus agnatus, I, 211.</td>
</tr>
<tr>
<td>Syn. Poterioocrinus brittsi.</td>
</tr>
<tr>
<td>Poterioocrinus brittsi, I, 211.</td>
</tr>
<tr>
<td>Poterioocrinus carbonarius, I, 219.</td>
</tr>
<tr>
<td>Syn. Phialocrinus carbonarius.</td>
</tr>
<tr>
<td>Poterioocrinus enormis, I, 208.</td>
</tr>
<tr>
<td>Syn. Cyathocrinus enormis.</td>
</tr>
<tr>
<td>Poterioocrinus hemisphericus, I, 220.</td>
</tr>
<tr>
<td>Syn. Cerioocrinus hemisphericus.</td>
</tr>
<tr>
<td>Poterioocrinus longidaetlyus, I, 211.</td>
</tr>
<tr>
<td>Syn. Scaphioocrinus missouriensis.</td>
</tr>
<tr>
<td>Poterioocrinus maniformiss, I, 217.</td>
</tr>
<tr>
<td>Syn. Eupaechycriinus maniformiss.</td>
</tr>
<tr>
<td>Poterioocrinus meekianus, I, 211.</td>
</tr>
<tr>
<td>Syn. Baryrnycriinus meekianus.</td>
</tr>
<tr>
<td>Poterioocrinus missouriensis, I, 211.</td>
</tr>
<tr>
<td>Syn. Scaphioocrinus missouriensis.</td>
</tr>
<tr>
<td>Poterioocrinus proboscidialis, I, 212.</td>
</tr>
<tr>
<td>Syn. Scaphioocrinus proboscidialis.</td>
</tr>
<tr>
<td>Syn. Baryrnycriinus rhombiferus.</td>
</tr>
<tr>
<td>Poterioocrinus rugosus, I, 225.</td>
</tr>
<tr>
<td>Doubtful.</td>
</tr>
<tr>
<td>Poterioocrinus rusticellus, I, 212.</td>
</tr>
<tr>
<td>Syn. Scaphioocrinus rusticellus.</td>
</tr>
<tr>
<td>Poterioocrinus vanhornii, I, 213.</td>
</tr>
<tr>
<td>Syn. Seyaloocrinus vanhornii.</td>
</tr>
<tr>
<td>Prismopora trifolia, II, 18.</td>
</tr>
<tr>
<td>Producta costata, II, 51.</td>
</tr>
<tr>
<td>Syn. Productus costatus.</td>
</tr>
<tr>
<td>Producta incurvata, II, 67.</td>
</tr>
<tr>
<td>Syn. Streptorhynchus crenistria.</td>
</tr>
<tr>
<td>Productella pyxidata, II, 52.</td>
</tr>
<tr>
<td>Productella subalata, II, 52.</td>
</tr>
<tr>
<td>Productus aequicostatus, II, 47.</td>
</tr>
<tr>
<td>Syn. Productus cora.</td>
</tr>
<tr>
<td>Productus altonensis, II, 43.</td>
</tr>
<tr>
<td>Productus americanus, II, 44.</td>
</tr>
<tr>
<td>Productus arcuatus, II, 40.</td>
</tr>
<tr>
<td>Productus asper, II, 48.</td>
</tr>
<tr>
<td>Syn. Productus nebrascensis.</td>
</tr>
<tr>
<td>Productus biseriat us, II, 43.</td>
</tr>
<tr>
<td>Productus blairi, II, 106.</td>
</tr>
<tr>
<td>Doubtful.</td>
</tr>
<tr>
<td>Productus burlingtonensis, II, 41.</td>
</tr>
<tr>
<td>Productus calhounianus, II, 50.</td>
</tr>
<tr>
<td>Syn. Productus semireticulatus.</td>
</tr>
<tr>
<td>Productus callawayensis, II, 106.</td>
</tr>
<tr>
<td>Doubtful.</td>
</tr>
<tr>
<td>Productus cestriensis, II, 44.</td>
</tr>
<tr>
<td>Productus cooperensis, II, 40.</td>
</tr>
<tr>
<td>Syn. Productus acutatus.</td>
</tr>
<tr>
<td>Productus cora, II, 47.</td>
</tr>
<tr>
<td>Productus corformis, II, 41.</td>
</tr>
<tr>
<td>Syn. Productus laevicostus.</td>
</tr>
<tr>
<td>Productus costatoides, II, 45.</td>
</tr>
<tr>
<td>Syn. Productus longispinus.</td>
</tr>
<tr>
<td>Productus costatus, II, 51.</td>
</tr>
<tr>
<td>Productus elegans, II, 44.</td>
</tr>
<tr>
<td>Syn. Productus cestriensis.</td>
</tr>
<tr>
<td>Productus flemingi, II, 47.</td>
</tr>
<tr>
<td>Productus flemingi, var. burlingtonensis, II, 41.</td>
</tr>
<tr>
<td>Syn. Productus burlingtonensis.</td>
</tr>
<tr>
<td>Productus gradatus, II, 43.</td>
</tr>
<tr>
<td>Syn. Productus vittatus.</td>
</tr>
<tr>
<td>Productus hildrethianus, II, 47.</td>
</tr>
<tr>
<td>Syn. Productus cora.</td>
</tr>
<tr>
<td>Productus horridus, II, 45.</td>
</tr>
<tr>
<td>Syn. Productus longispinus.</td>
</tr>
<tr>
<td>Productus koninckianus, II, 47.</td>
</tr>
<tr>
<td>Syn. Productus cora.</td>
</tr>
<tr>
<td>Productus paviestus, II, 41.</td>
</tr>
<tr>
<td>Productus longispinus, II, 45.</td>
</tr>
<tr>
<td>Productus magnicostatus, II, 40.</td>
</tr>
<tr>
<td>Spn. Productus semireticulatus.</td>
</tr>
<tr>
<td>Productus magnus, II, 41.</td>
</tr>
<tr>
<td>Productus marginiextus, II, 43.</td>
</tr>
<tr>
<td>Productus mesialis, II, 41.</td>
</tr>
<tr>
<td>Syn. Productus burlingtonensis.</td>
</tr>
</tbody>
</table>
INDEXICAL LIST OF FOSSILS.

Productus muricatus, II, 45.
 Syn. Productus longispinus.

Productus nebrascensis, II, 48.

Productus norwoodi, II, 48.
 Syn. Productus nebrascensis.

Productus orbignyanus, II, 45.
 Syn. Productus longispinus.

Productus ovatus, II, 44.

Productus parvus, II, 44.
 Syn. Productus cestriensis.

Productus pentonensis, II, 41.
 Syn. Productus magnus.

Productus portlockianus, II, 51.
 Syn. Productus costatus.

Productus prattenianus, II, 47.
 Syn. Productus cora.

Productus punctatus, II, 51.

Productus pyxidatus, II, 52.
 Syn. Productella pyxidata.

Productus rogersi, II, 48.
 Syn. Productus nebrascensis.

Productus semireticulatus, II, 50.
 Syn. Productus cora.

Productus semipunctatus, II, 51.
 Syn. Productus punctatus.

Productus shumardianus, II, 52.
 Syn. Productella pyxidata.

Productus splendens, II, 45.
 Syn. Productus longispinus.

Productus symmetricus, II, 48.

Productus teniicostus, II, 41.

Productus tubulospinus, II, 51.
 Syn. Productus punctatus.

Productus wabashensis, II, 45.
 Syn. Productus longispinus.

Productus wafberanu, II, 48.
 Syn. Productus nebrascensis.

Productus wortheni, II, 43.
 Syn. Productus marginicinctus.

Proetus anriculatus, I, 233.
 Syn. Proteus missouriensis.

Proetes missouriensis, I, 233.
 Syn. Ptychoporia conica.

Proetes shumardil, I, 233.
 Syn. Proteus missouriensis.

Proetes swallowii, I, 234.

Proetella discoidea, II, 37.

Psammmodus rhomboideus, II, 234.
 Syn. Sandalodus lavissimus.

Psammmodus plenus, II, 235.

Psammmodus semi-cylindricus, I, 234

Psephodus latus, II, 232.

Pterotocrinus chesterensis, I, 206.

Ptilopora acuta, II, 31.

Ptilopora cylindracea, II, 32.

Ptilopora prouti, II, 32.

Ptilopora valida, II, 32.

Ptychocrinus splendens, I, 162.

Ptychoporia conica, I, 233.

Pterinea gibbosa, II, 114.
 Syn. Monopteria gibbosa.

Pterinea longispina, II, 114.
 Syn. Monopteria longispina.

Raphistoma lenticularis, II, 163.

Raphistoma subplana, II, 163.

Receptaculites oweni, I, 103.

Retzia mormoni, II, 95.

Retzia osagensis, II, 94.

Retzia popenana, II, 106.

Doubtful.

Retzia punctillifera, II, 95.
 Syn. Retzia mormoni.

Retzia subglobosa, II, 95.
 Syn. Retzia mormoni.

Retzia vera, II, 95.

Retzia vera, var. costata, II, 95.

Rhodocrinus coxanus, I, 163.

Rhodocrinus parvus, I, 163.

Syn. Rhodocrinus coxanus.

Rhodocrinus polydactylus, I, 163.
 Syn. Rhodocrinus coxanus.

Rhodocrinus wachsmuthii, I, 163.

Rhodocrinus whiteii, I, 163.

Rhodocrinus wortheni, I, 162.

Rhombopora attenuata, II, 34.

Rhombopora crassa, II, 34.

Rhombopora dichotoma, II, 33.

Rhombopora lepidodendroides, II, 35.

Rhombopora tabulata, II, 34.

Rhombopora tenuicostata, II, 34.

Rhombopora transversalis, II, 34.

Rhombopora variaus, II, 33.

Rhynconella arctirostrata, II 102.
 Syn. Rhynconella subcuneata.
Rhynchonella angulata, II, 76.
 Syn. Syntrilasma hemiplicata.
Rhynchonella capax, II, 90.
Rhynchonella dentata, II, 100.
Rhynchonella missouriensis, II, 100.
Rhynchonella mutata, II, 103.
Rhynchonella osagensis, II, 103.
 Syn. Rhynchonella uta.
Rhynchonella ottumwa, II, 103.
Rhynchonella parvini, II, 102.
 Syn. Rhynchonella subtrigona.
Rhynchonella perrostellata, II, 106.
 Doubtful.
Rhynchonella ringeus, II, 102.
Rhynchonella subequata, II, 102.
Rhynchonella subtrigona, II, 102.
Rhynchonella uta, II, 103.
Rhynchonella warrenensis, 106.
 Doubtful.
Sandalodus carbonarius, II, 234.
 Syn. Orthopleurodus carbonarius.
Sandalodus crassus, II, 234.
 Syn. Sandalodus spatulatus.
Sandalodus grandis, II, 234.
 Syn. Sandalodus levissimus.
Sandalodus levissimus, II, 234.
Sandalodus spatulatus, II, 234.
Scaphiocrinus boonvillensis, I, 212.
Scaphiocrinus carbonarius, I, 219.
 Syn. Phialocrinus carbonarius.
Scaphiocrinus constrictus, I, 212.
 Syn. Scaphiocrinus boonvillensis.
Scaphiocrinus dactyloformis, I, 211.
Scaphiocrinus gorbyi, I, 213.
Scaphiocrinus hemisphericus, I, 220
 Syn. Cerioocrinus hemisphericus.
Scaphiocrinus missouriensis, I, 211.
Scaphiocrinus orbiculalis, I, 217.
 Syn. Eupachyocrinus orbicularis.
Scaphiocrinus proboscidialis, I, 212.
Scaphiocrinus rusticellus, I, 212.
Scaphiocrinus sampsoni, I, 213.
Scaphiocrinus scoparius, I, 212.
Schizoblastus melo, I, 139.
 Syn. Cryptoblastus melo.
Schizoblastus melonoides, I, 138.
Schizoblastus projectus, I, 140.
 Syn. Granatoocrinus projectus.
Schizoblastus roemer i, I, 137.
Schizoblastus sampsoni, I, 137.
 Syn. Schizoblastus roemer i.
Schizoblastus savi, I, 138.
Schizodus curtus, II, 123.
Schizodus harii, II, 123.
Schizodus obscurus, II, 123.
 Syn. Schizodus wheeleri.
Schizodus rossicus, II, 124.
 Syn. Schizodus curtus.
Schizodus wheeleri, II, 123.
Sci talocirinus dactylius, I, 213.
Sci talocirinus maniformis, I, 217.
 Syn. Eupachyocrinus maniformis.
Sci talocirinus vanhornei, I, 213.
Septopora biserialis, II, 32.
Septopora cestriensis, II, 32.
Serpula planorbites, II, 180.
 Syn. Straparolus catilloides.
Solen missouriensis, II, 132.
 Doubtful.
Soleniscus brevis, II, 212.
Soleniscus fusiformis, II, 213.
 Syn. Soleniscus newberryi.
Soleniscus gracilis, II, 211.
Soleniscus medialis, II, 215.
 Syn. Sphærodoma medialis.
Soleniscus missouriensis, II, 211.
Soleniscus newberryi, II, 212.
Soleniscus paludinaiformis, II, 211.
Soleniscus planus, II, 213.
 Syn. Soleniscus newberryi.
Soleniscus ponderosus, II, 213.
 Syn. Sphærodoma ponderosa.
Soleniscus primogenius, II, 215.
 Syn. Sphærodoma primogenia.
Soleniscus texan us, II, 213.
 Syn. Sphærodoma ponderosa.
Solenocaris sancti-ludovici, I, 239.
Solenochilus blairi, II, 221.
 Syn. Nautilus burlingtonensis.
Solenopsis solenoides, II, 130.
Sphærodoma littonana, II, 214.
Sphærodoma medialis, II, 215.
Sphærodoma penguis, II, 213.
Sphærodoma ponderosa, II, 213.
Sphærodoma primogenia, II, 215.
Spirifer amarus, II, 106.
 Doubtful.
Spirifer anæ, II, 106.
 Doubtful.
Spirifer boonensis, II, 84.
 Syn. Spiriferina rockymontana.
Spirifer cameratus, var. kansasensis, II, 83.
 Syn. Spiriferina camerata.
Spirifer cameratus, var. percrassus, II, 83.
 Syn. Spiriferina camerata.
Spirifer capax, II, 77.
 Syn. Spiriferina parryana.
Spirifer carteri, II, 87.
 Syn. Syringothyris carteri.
Spirifer clarus, II, 106.
 Doubtful.
Spirifer cuspidatiformis, II, 89.
 Syn. Syringothyris texta.
Spirifer biforatus, II, 64.
 Syn. Platystrophia lynx.
Spirifer euruteines, II, 77.
 Syn. Spiriferina parryana.
Spirifer extenuatus, II, 86.
 Syn. Syringothyris extenuata.
Spirifer faseiger, II, 83.
 Syn. Spiriferina camerata.
Spirifer glaber, var. contractus, II, 83.
 Syn. Spiriferina contracta.
Spirifer hannibalensis, II, 87.
 Syn. Syringothyris carteri.
Spirifer hemiplicatus, II, 76.
 Syn. Syntrilasma hemiplicata.
Spirifer incerebescens, var. americanus, II, 82.
 Syn. Spiriferina incerebescens.
Spirifer kentuckensis, var. propatus, II, 96.
 Syn. Spiriferina kentuckensis.
Spirifer keokuk, var. shelbyensis, II, 81.
 Syn. Spiriferina keokuk.
Spirifer lævigatus, II, 81.
 Syn. Spiriferina logani.
Spirifer laminosus, II, 86.
 Syn. Spiriferina kentuckensis.
Spirifer latior, II, 106.
 Doubtful.
Spirifer lineatus, var. striato-lineatus, II, 84.
 Syn. Spiriferina perplexa.
Spirifer littoni, II, 81.
 Syn. Spiriferina keokuk.
Spirifer lynx, II, 64.
 Syn. Platystrophia lynx.
Spirifer meekei, II, 106.
 Doubtful.
Spirifer meusebachanus, II, 83.
 Syn. Spiriferina camerata.
Spirifer missouriensis, II, 78.
 Syn. Spiriferina marionensis.
Spirifer octoplicatus, II, 86.
 Syn. Spiriferina kentuckensis.
Spirifer opimus, II, 84.
 Syn. Spiriferina rockymontana.
Spirifer osagensis, II, 78.
 Syn. Spiriferina marionensis.
Spirifer ozarkensis, II, 78.
 Syn. Spiriferina marionensis.
Spirifer parryana, II, 77.
Spirifer perextensus, II, 77.
 Syn. Spiriferina ligus.
Spirifer permutus, II, 77.
 Syn. Spiriferina ligus.
Spirifer plenus, II, 88.
 Syn. Syringothyris plena.
Spirifer propinquus, II, 88.
 Syn. Syringothyris texta.
Spirifer spinosus, II, 85.
 Syn. Spiriferina spinosa.
Spirifer subceuspidatus, II, 88.
 Syn. Syringothyris texta.
Spirifer subventricosus, II, 84.
 Syn. Spiriferina rockymontana.
Spirifer textus, II, 88.
 Syn. Syringothyris texta.
Spirifer transilatus, II, 83.
 Syn. Spiriferina setigera.
Spirifer triplicatus, II, 83.
 Syn. Spiriferina camerata.
INDEXICAL LIST OF FOSSILS.

Spirifer vernonensis, II, 78.
Spiriferatwaterana, II, 77.
Spirifer cooperensis, II, 78.
Spirifer crenistria, II, 67.
Spirifer ligus.
Spirifer marionensis.
Spirifer atwaterana, II, 77.
Spirifer ligus.
Spirifer oontraota, II, 78.
Spirifer oonterata, II, 78.
Spirifer orenistria, II, 67.
Spirifer forbesi, II, 80.
Spirifer grimesi, II, 79.
Spirifer lineatus, II, 80.
Spirifer kellelogi, II, 81.
Spirifer kellogi, II, 81.
Spirifer leidyi, II, 82.
Spirifer leidyi, var. chesterensis, II, 82.
Spirifer leidyi, var. merimacensis, II, 82.
Spirifer ligus, II, 77.
Spirifer lineoloides, II, 80.
Spirifer lineatus, II, 84.
Spirifer logani, II, 81.
Spirifer marionensis, II, 78.
Spirifer peculiaris, II, 79.
Spirifer perplexa, II, 84.
Spirifer planoconvexus, II, 85.
Spirifer pseudolineata, II, 82.
Spirifer rockymontana, II, 84.
Spiriger setigera, II, 83.
Spiriger subrectunda, II, 78.
Spiriger taneyensis, II, 78.
Spirigerina clarkevillensis, II, 85.
Spirigerina kentuckensis, II, 86.
Spirigerina spinosa, II, 85.
Spirigerameriana, II, 92.
Spirigeraramercanana, II, 92.
Spirigerastublamella.
Spirigeracaput-serpentis, 93.
Spirigeracharitonensis, II, 93.
Spirigerahawii, II, 93.
Spirigerajacksoniana, II, 106.
Spirigeralaconensis, II, 106.
Spirigeram搜集nalii, II, 106.
Spirigeramissouriensis, II, 106.
Spirigeraplatensis, II, 106.
Spirigeraprunltii, II, 91.
Spirigerareflexa, II, 92.
Spirigerasingletonii, II, 92.
Spirigerasubquadrata.
Spirigerasubtilitla.
Spirigerausabula.
Sphenopteriumenorme, var. depressum, I, 118.
Stenopora tuberculata, II, 15.
Stenopterodus parvulus, II, 233.
Stictoporella basalis, II, 22.
Straparollus ammon, II, 158.
Straparollus blairi, II, 158.
Syn. Straparollus latus.
Straparollus catilloides, II, 160.
Straparollus latus, II, 158.
Straparollus lens, II, 134.
Syn. Pleurotomaria lens.
Straparollus planidorsatus, II, 160.
Straparollus spergenensis, II, 159.
Straparollus springvalensis, II, 162.
Syn. Omphalotrochus springvalensis.
Straparollus subquadratus, II, 162.
Straparollus subrugosus, II, 160.
Syn. Straparollus catilloides.
Streblotrypa distincta, II, 36.
Streblotrypa major, II, 35.
Streblotrypa nicklesi, II, 36.
Streblotrypa radialis, II, 35.
Streptelasma corniculum, I, 117.
Streptorhynchus crenistria, II, 67.
Streptorhynchus flitexta, II, 67.
Streptorhynchus lens, II, 67.
Streptorhynchus occidentalis, II, 69.
Syn. Meekella striatocostata.
Streptorhynchus pyramidalis, II, 68.
Syn. Meekella striatocostata.
Streptorhynchus subplanum, II, 67.
Striatopora carbonaria, I, 120.
Striatopora missouriensis, I, 121.
Stromatopora expansa, I, 104.
Strophalosia horrescens, II, 48.
Syn. Productus nebrascensis.
Strophodonta raequicostata, II, 70.
Syn. Strophodonta demissa.
Strophodonta altidorsata, II, 106.
Doubtful.
Strophodonta boonensis, II, 74.
Syn. Strophodonta cymbiformis.
Strophodonta cymbiformis, II, 74.
Strophodonta demissa, II, 70.
Strophodonta inflexa, II, 74.
Syn. Strophodonta cymbiformis.
Strophodonta kemperi, II, 74.
Syn. Strophodonta cymbiformis.
Strophodonta navalis, II, 70.
Syn. Strophodonta demissa.
Strophodonta quadrata, II, 70.
Syn. Strophodonta demissa.
Strophodonta subcymbiformis, II.
Syn. Strophodonta cymbiformis.
Strophomena alternata, II, 70.
Strophomena deltoidea, II, 69.
Strophomena planumbona, II, 73.
Strophomena rhomboidalis, II, 70.
Syn. Plectambonites rhomboidalis
Strophomena sericea, II, 75.
Syn. Leptæna sericea.
Strophostylus carleyana, II, 196.
Strophostylus nana, II, 196.
Strophostylus peoriensis, II, 197.
Strophostylus remex, II, 197.
Strophostylus reversus, II, 195.
Strotocrinus bloomfieldensis, I, 193.
Syn. Strotocrinus regalis.
Strotocrinus liratus, I, 191.
Syn. Telicocrinus liratus.
Strotecrinus umbrosus, I, 193.
Strotocrinus umbrosus, I, 190.
Syn. Telicocrinus umbrosus.
Strotoporodermata, II, 17.
Strotoporodaveolata, II, 17.
Stylifer primumgenia, II, 215.
Syn. Sphaerodoma primogenia.
Subulites elongatus, II, 215.
Symbathocrinus blairi, I, 207.
Syn. Symbathocrinus swallovi.
Symbathocrinus dentatus, I, 206.
Symbathocrinus swallovi, I, 207.
Symbathocrinus wortheni, I, 206.
Synocladia biserialis, II, 32.
Syn. Septopora biserialis.
Synocladia virgulacea, II, 32.
Syn. Septopora biserialis.
INDEXICAL LIST OF FOSSILS.

265

Syntrilasma hemiplicata, II, 76.
Syringopora harveyi, I, 121.
Syringopora multatenuata, I, 122.
Syringothyris carteri, II, 87.
Syringothyris cuspidatus, II, 87.
Syn. Syringothyris carteri.
Syringothyris extenuata, II, 86.
Syringothyris occidentalis, II, 86.
Syringothyris plena, II, 88.
Syringothyris texta, II, 88.
Syringothyris typa, II, 87.
Syn. Syringothyris carteri.

Tæniodictya frondosa, II, 22.
Tæniodictya ramulosa, II, 22.
Talarocrinus simplex, I, 205.
Tanodus praenuntius, II, 231.
Tanaodus sculptus, II, 231.
Taxocrinus giddingei, I, 223.
Taxocrinus shumardianus, I, 224.
Taxocrinus thiemi, I, 223.
Teliocrinus liratus, I, 191.
Teliocrinus umbrosus, I, 190.
Tentaculites incurvus, II, 217.
Terebratula arcuata, II, 107.
Doubtful.
Terebratula argentea, II, 92.
Syn. Athyris argentea.
Terebratula brevilobata, II, 107.
Doubtful.
Terebratula geniculosa, II, 105.
Syn. Terebratula bovidens.
Terebratula gracilis, II, 107.
Doubtful.
Terebratula lynx, II, 64.
Syn. Platystrophia lynx.
Terebratula millepunctata, II, 105.
Syn. Terebratula bovidens.
Terebratula mormoni, II, 95.
Syn. Retzia mormoni.
Terebratula parva, II, 105.
Terebratula rowleyi, II, 105.
Terebratula subtilita, II, 92.
Syn. Athyris argentea.
Terebratula trinuclea, II, 92.
Syn. Athyris trinuclea.
Terebratula uta, II, 103.
Syn. Rhynchonella uta.
Thammiscus furcillatus, II, 31.
Trachydomia nodosum, II, 201.
Trachydomia nodulosa, II, 200.
Syn. Trachydomia wheeleri.
Trachydomia wheeleri, II, 200.
Trematoocrinus typus, I, 164.
Syn. Gilbertsoerinus typus.
Trematospora imbricata, II, 96.
Tremochilus forbesianus, II, 223.
Syn. Nautilus forbesianus.
Trochita carbonaria, II, 216.
Doubtful.
Trochonema umbilicata, II, 155.
Trochus missouriensis, II, 136.
Syn. Pleurotomaria missouriensis
Troostocrinus lineatus, I, 136.
Syn. Metablastus lineatus.
Turbo tabulata, I, 142.
Syn. Pleurotomaria tabulata.
Turritella stevensana, II, 202.
Syn. Aclisina minuta.

Xystrodus imitatus, II, 233.

Yoldia subscitula, II, 123.

Zaphrentis calceola, I, 100.
Zaphrentis cylindrica, I, 111.
Zaphrentis dalei, I, 113.
Zaphrentis elliptica, I, 111.
Zaphrentis exigua, I, 112.
Zaphrentis gians, I, 116.
Syn. Hadrophyllum gians.
Zaphrentis illinoiensis, I, 114.
Syn. Zaphrentis acuta.
Zaphrentis pellaeensis, I, 114.
Syn. Zaphrentis spinulosa.
Zaphrentis spergensis, I, 115.
Zaphrentis spinulifera, I, 114.
Syn. Zaphrentis spinulosa.
Zaphrentis spinulosa, I, 114.
Zaphrentis tantilla, I, 111.
Zaphrentis tenella, I, 111.
Zaphrentis varsavensis, I, 114.
Zeacrinus acanthophorus, I, 215.
 Syn. Hydreionocrinus acanthophorus.
Zeacrinus commaticus, I, 214.
 Syn. Woodocrinus elegans.
Zeacrinus elegans, I, 214.
 Syn. Woodocrinus elegans.
Zeacrinus magnoliformis, I, 214.
 Syn. Eupachycrinus maniformis.
Zeacrinus microspinus, I, 216.
 Syn. Hydreionocrinus microspinus.
Zeacrinus pectillum, I, 214.
 Syn. Woodocrinus pectillum.
Zeacrinus saceulis, I, 214.
 Syn. Woodocrinus elegans.
Zeacrinus scoparius, I, 214.
 Syn. Woodocrinus elegans.
Zeacrinus troostianus, I, 214.
 Syn. Woodocrinus elegans.
Zygospira nodaesta, II, 98.
Zygospira subconcaeva, II, 99.
PLATE XXXIII.
EXPLANATION OF PLATE XXXIII.

<table>
<thead>
<tr>
<th>FIG.</th>
<th>Specimen</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Archimedes wortheni [A large example. (Cox collection.) Carboniferous, Keokuk limestone.]</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Archimedes owenanus [A typical specimen. (Mus. Mo. Geol. Sur.) Carboniferous, Keokuk limestone.]</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Phacelopora pertenuis [Part of a zoarium. (After Ulrich.) Silurian, Trenton limestone.]</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Rhombopora lepidodendroides [A large example. (Hare collection.) Carboniferous, Upper Coal Measures.]</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Glyptopora plumosa [Fragment. (After Ulrich.) Carboniferous, St. Louis limestone.]</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Thamniscus furcillatus [Fragment. (Enlarged, after Ulrich.) Carboniferous, Kaskaskia limestone.]</td>
<td>31</td>
</tr>
</tbody>
</table>
PLATE XXXIV.
EXPLANATION OF PLATE XXXIV.

Fig. 1. *Setopora biseriata* ... 32
1a. Non-poriferous side. (Hare collection.)
1b. A part of same (enlarged).
1c. Poriferous side (enlarged).
1d. Another specimen. (Hare collection.)
 Carboniferous, Upper Coal Measures.

Fig. 2. *Fenestella shumardi* ... 24
2a. Specimen well preserved. (Hare collection.)
2b. Surface (enlarged).
 Carboniferous, Upper Coal Measures.

Fig. 3. *Fistulopora nodulifera*.
 Part of a branch. (Hare collection.)
 Carboniferous, Upper Coal Measures.

Fig. 4. *Lyropora retrorsa* ... 27
 Marginal support. (Mus. Mo. Geol. Sur.)
 Carboniferous, Burlington limestone.

Fig. 5. *Fenestella rudis* ... 28
 Fragment. (After Ulrich.)
 Carboniferous, Keokuk limestone.

Fig. 6. *Actinotrypa peculiaris* ... 18
 Surface (enlarged).
 Carboniferous, Keokuk limestone.
POLYZOANS.
PLATE XXXV.
<table>
<thead>
<tr>
<th>FIG. 1.</th>
<th>Conularia missouriensis</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>la.</td>
<td>Large specimen. (Mus. Mo. Geol. Sur.)</td>
<td>218</td>
</tr>
<tr>
<td>1b.</td>
<td>Cross-section of same. Carboniferous, Saint Louis limestone.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 2.</th>
<th>Conularia crusa</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medium-sized specimen. (Mus. Mo. Geol. Sur.) Carboniferous, Upper Coal Measures.</td>
<td>219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 3.</th>
<th>Tentaculites incurvus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a.</td>
<td>Type. (After Shumard) Silurian, Girardeau limestone.</td>
<td>217</td>
</tr>
<tr>
<td>3b.</td>
<td>Part of same (enlarged).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 4.</th>
<th>Lingula umbonata</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average-sized specimen. Carboniferous, Upper Coal Measures.</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 5.</th>
<th>Lingulella lamborni</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Views of different specimens. (Mus. Mo. Geol. Sur.) Cambrian limestone.</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 6.</th>
<th>Discina nitida</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Several examples on shale. Carboniferous, Upper Coal Measures.</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 7.</th>
<th>Discina convexa</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A large specimen. Carboniferous, Upper Coal Measures.</td>
<td>40</td>
</tr>
</tbody>
</table>
BRACHIOPODS.
PLATE XXXVI.
EXPLANATION OF PLATE XXXVI.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Productus costatus</td>
<td>51</td>
</tr>
<tr>
<td>1a.</td>
<td>Ventral view</td>
<td></td>
</tr>
<tr>
<td>1b.</td>
<td>Dorsal view</td>
<td></td>
</tr>
<tr>
<td>1c.</td>
<td>Side view</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Upper Coal Measures.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Productus symmetricus</td>
<td>48</td>
</tr>
<tr>
<td>2a.</td>
<td>Side aspect</td>
<td></td>
</tr>
<tr>
<td>2b.</td>
<td>Ventral aspect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Upper Coal Measures.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Productus costatus?</td>
<td>51</td>
</tr>
<tr>
<td>3a.</td>
<td>Ventral view</td>
<td></td>
</tr>
<tr>
<td>3b.</td>
<td>Dorsal aspect</td>
<td></td>
</tr>
<tr>
<td>3c.</td>
<td>Side view</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Upper Coal Measures.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Productus semireticulatus</td>
<td>50</td>
</tr>
<tr>
<td>4a.</td>
<td>Ventral aspect</td>
<td></td>
</tr>
<tr>
<td>4b.</td>
<td>Dorsal view</td>
<td></td>
</tr>
<tr>
<td>4c.</td>
<td>Side view</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Upper Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>
BRACHIOPODS.
PLATE XXXVII.
EXPLANATION OF PLATE XXXVII.

Page

Fig. 1. Productus punctatus .. 51
1a. Side view.
1b. Dorsal view.
1c. Ventral view.
 Carboniferous, Upper Coal Measures.

Fig. 2. Productus cora ... 47
2a. Ventral aspect.
2b. Dorsal view.
2c. Ventral view of another variety.
 Carboniferous, Upper Coal Measures.

Fig. 3. Productus nebrascensis ... 48
3a. Dorsal view.
3b. Side view.
3c. Ventral view.
 Carboniferous, Upper Coal Measures.

Fig. 4. Productus longispinus ... 45
4a. Dorsal view.
4b. Ventral aspect.
 Carboniferous, Upper Coal Measures.

Fig. 5. Chonetes levis ... 55
5a. Ventral view of type specimen.
5b. Longitudinal section of same.
 Carboniferous, Lower Coal Measures.

Fig. 6. Chonetes lemingi .. 54
6a. Ventral view of specimen with short hinge-line.
6b. Ventral aspect of example with long hinge-line.
BRACHIOPODS.
PLATE XXXVIII.
EXPLANATION OF PLATE XXXVIII.

Fig. 1. *Productus lavicostus* ... 44
 1a. Ventral aspect.
 Carboniferous, Kinderhook shales.

Fig. 2. *Chonetes ornata* ... 53
 2a. Ventral view.
 Carboniferous ?, Louisiana (Kinderhook) limestone.

Fig. 3. *Chonetes genicula* ... 53
 Specimen enlarged two diameters.
 Carboniferous ?, Louisiana (Kinderhook) limestone.

Fig. 4. *Productella pyxidata* ... 52
 4a. Ventral aspect of a smooth variety.
 4b. Dorsal view of smooth shell.
 4c. Ventral aspect of a ribbed shell.
 4d. Ventral view of subspinous variety.
 Carboniferous ?, Louisiana (Kinderhook) limestone.

Fig. 5. *Orthis swallowi* ... 63
 View of a large example.
 Carboniferous, Burlington limestone.

Fig. 6. *Orthis iowensis* ... 62
 6a. Side view.
 6b. Dorsal aspect.
 6c. Ventral valve.
 Devonian, Caliaway limestone.

Fig. 7. *Orthis burlingtonensis* ... 63
 A mature individual.
 Carboniferous, Burlington limestone.

Fig. 8. *Streptorhynchus crenistris* ... 67
 8a. Ventral valve, exterior.
 8b. Dorsal valve, inside.
 8c. Dorsal valve, outside.
 8d. Ventral valve, interior.
 8e. Ventral aspect.
 8f. Dorsal valve, inside.
 8g. Ventral valve, inside.
 8h. Dorsal aspect.
 Carboniferous, Upper Coal Measures.
BRACHIOPODS.
PLATE XXXIX.
EXPLANATION OF PLATE XXXIX.

Fig. 1. *Meckella striatocostata* .. 68
1a. Side view.
1b. Dorsal aspect.
1c. Ventral view.
Carboniferous, Upper Coal Measures.

Fig. 2. *Streptorhynchus lens* .. 67
2a. Ventral aspect (Mus. Mo. Geol. Sur.)
2b. Dorsal aspect of same.
Carboniferous ? Louisiana (Kinderhook) limestone.

Fig. 3. *Strophomena alternata* .. 70
An average size specimen. (Mus. Mo. Geol. Sur.)
Silurian, Trenton limestone.

Fig. 4. *Orthia tricentaria* ... 60
Ventral aspect. (Mus. Mo. Geol. Sur.)
Silurian, Trenton limestone.

Fig. 5. *Platystrophia lynx* ... 64
Dorsal view. (Mus. Mo. Geol. Sur.)
Silurian, Trenton limestone.

Fig. 6. *Plectambonites rhomboidalis*, var .. 70
Ventral aspect. (Rowley collection.)
Carboniferous, Lower Burlington limestone.

Fig. 7. *Strophodonta demissa* ... 70
7a. Dorsal aspect.
7b. Ventral view.
Devonian, Hamilton limestone.

Fig. 8. *Syntrilasma hemiplicata* ... 76
8a. Anterior view.
8b. Dorsal view.
8c. Ventral view.
8d. Side view.
Carboniferous, Upper Coal Measures.

Fig. 9. *Leptanea sericea* ... 75
Interior side (Mus. Mo. Geol. Sur.)
Silurian, Hudson river shales.

Fig. 10. *Cyrtina acutirostris* ... 89
10a. Side view (Mus. Mo. Geol. Sur.)
10b. Dorsal aspect of same.
Carboniferous ?, Louisiana (Kinderhook) limestone.

Fig. 11. *Athyris argentea* ... 92
11a. Ventral aspect.
11b. Side view.
11c. Dorsal aspect.
11d. Dorsal aspect.
Carboniferous, Coal Measures.
PLATE XL.
EXPLANATION OF PLATE XL

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Spirifera marionensis</td>
<td>78</td>
</tr>
<tr>
<td>1a.</td>
<td>Dorsal aspect. (Mus. Mo. Geol. Sur.)</td>
<td></td>
</tr>
<tr>
<td>1b.</td>
<td>Same of another specimen. (Same cabinet.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous? Louisiana, (Kinderhook) limestone.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Spirifera keokuk</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Dorsal view. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Keokuk limestone.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Spirifera forbesi</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Ventral view. (Mus. Mo. Geol. Sur.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Spirifera parryana</td>
<td>77</td>
</tr>
<tr>
<td>4a.</td>
<td>Ventral aspect.</td>
<td></td>
</tr>
<tr>
<td>4b.</td>
<td>Dorsal view of same.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devonian, Hamilton limestone.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Spirifera camerata</td>
<td>83</td>
</tr>
<tr>
<td>5a.</td>
<td>Dorsal view.</td>
<td></td>
</tr>
<tr>
<td>5b.</td>
<td>Dorsal aspect.</td>
<td></td>
</tr>
<tr>
<td>5c.</td>
<td>Ventral valve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Coal Measures.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Spirifera lineatoides</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Dorsal aspect of an exfoliated specimen. (Mus. Mo. Geol. Sur.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Spirifera sp.?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dorsal aspect. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Kinderhook shales.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Syringothyris plenus</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Side view. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Syringothyris kentuckensis</td>
<td>86</td>
</tr>
<tr>
<td>9a.</td>
<td>Posterior view.</td>
<td></td>
</tr>
<tr>
<td>9b.</td>
<td>Ventral view.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Coal Measures.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Syringothyris carteri</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Posterior view. (Mus. Mo. Geol. Sur.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
</tbody>
</table>
PLATE XLI.
EXPLANATION OF PLATE XLI.

Fig. 1. *Athyris vittata* ... 90
 1a. Dorsal view.
 1b. Ventral aspect.
 Devonian, Hamilton limestone.

Fig. 2. *Retzia mormoni* ... 95
 2a. Side view
 2b. Dorsal aspect.
 2c. Ventral view.
 Carboniferous, Upper Coal Measures.

Fig. 3. *Rhynchonella dentata* .. 100
 Ventral aspect. (Mus. Mo. Geol. Sur.)
 Silurian, Trenton limestone.

Fig. 4. *Retzia sp.?* Dorsal aspect. (Mus. Mo. Geol. Sur.)
 Carboniferous, Lower Burlington limestone.

Fig. 5. *Nuculaspis pteroforis* .. 94
 Ventral aspect. (Mus. Mo. Geol. Sur.)
 Silurian, Niagara? limestone.

Fig. 7. *Rhynchonella uta* .. 103
 Ventral aspect.
 Carboniferous, Upper Coal Measures.

Fig. 8. *Rhynchonella sp.?*
 8a. Dorsal aspect. (Davis collection)
 8b. Side view. (Davis collection)
 Carboniferous, Burlington limestone.

Fig. 9. *Athyris hannibalensis* .. 91
 Ventral aspect. (Mus. Mo. Geol. Sur.)
 Carboniferous? Louisiana (Kinderhook) limestone.

Fig. 10. *Athyris incrasatus* .. 91
 Dorsal aspect. (Mus. Mo. Geol. Sur.)
 Carboniferous, Burlington limestone.

Fig. 11. *Rhynchonella sp.?* Dorsal view. (Keyes collection)
 Carboniferous, Kinderhook shales.

Fig. 12. *Rhynchonella cepae* .. 99
 12b. Side view. (Mus. Mo. Geol. Sur)
 Silurian, Hudson River shales.

Fig. 13. *Atrypa reticularis* ... 97
 13a. Side view.
 13b. Dorsal aspect.
 Devonian, Hamilton limestone.

Fig. 14. *Terebratula sp.?* Dorsal view. (Rowley collection)
 Carboniferous, Burlington limestone.

Fig. 15. *Terebratula rowleyi* .. 105
 Dorsal aspect. (Rowley collection)
 Carboniferous, Lower Burlington limestone.
PLATE XLII.
EXPLANATION OF PLATE XLII.

<table>
<thead>
<tr>
<th>FIG.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lima retifera ... 108</td>
</tr>
<tr>
<td></td>
<td>Both valves. Carboniferous, Coal Measures.</td>
</tr>
<tr>
<td>2</td>
<td>Entolium aviculatum .. 109</td>
</tr>
<tr>
<td>3</td>
<td>Aviculopecten occidentalis ... 110</td>
</tr>
<tr>
<td></td>
<td>Left valve. Carboniferous, Upper Coal Measures.</td>
</tr>
<tr>
<td>4</td>
<td>Pseudomonotis hawni (?) A finely-preserved shell. (Hare collection.) Carboniferous, Upper Coal Measures.</td>
</tr>
<tr>
<td>6</td>
<td>Aviculopecten interlineatus ... 112</td>
</tr>
<tr>
<td></td>
<td>Specimen with concentric markings well defined. Carboniferous, Upper Coal Measures.</td>
</tr>
<tr>
<td>7</td>
<td>Aviculopecten fasciculatus .. 118</td>
</tr>
<tr>
<td></td>
<td>A large example. (Hare collection.) Carboniferous, Upper Coal Measures.</td>
</tr>
</tbody>
</table>
PLATE XLIII.
EXPLANATION OF PLATE XLIII.

FIG. 1. *Monopteria longispina* ... 114
Left valve. (Hare collection.)
Carboniferous, Upper Coal Measures.

FIG. 2. *Monopteria gibbosa* ... 114
2a. Right valve.
2b. Anterior view of same.
Carboniferous, Upper Coal Measures.

FIG. 3. *Myalina swallowi* ... 119
3a. Right valve.
3b. Left valve.
3c. Dorsal aspect.
Carboniferous, Upper Coal Measures.

FIG. 4. *Aviculopecten carboniferus* ... 111
4a. Valve showing markings.
4b. Opposite valve.
Carboniferous, Upper Coal Measures.

FIG. 5. *Myalina kansasensis* ... 117
Shell showing imbricated lines of growth. (Calvin collection.)
Carboniferous, Upper Coal Measures.

FIG. 6. *Aviculopecten sp.* ?
Specimen with ears broken away. (Hare collection.)
Carboniferous, Upper Coal Measures.

FIG. 7. *Aviculopecten magna* ... 110
Medium-sized specimen. (Shepard collection.)
Carboniferous, Burlington limestone.

FIG. 8. *Lithophaga sp.* ? ... 116
8a. Left valve. (Rowley collection.)
8b. Dorsal outline of same.
Carboniferous, Lower Burlington limestone.

FIG. 9. *Placunopsis carbonaria* ... 118
Left side. (Hare collection.)
Carboniferous, Upper Coal Measures.
PLATE XLIV.
EXPLANATION OF PLATE XLIV.

FIG. 1. *Myalina subquadrata* ... 118
 1a. Interior of valve.
 1b. Exterior of same.
 Carboniferous, Upper Coal Measures.

FIG. 2. *Myalina subquadrata* ... 118
 2a. Outside of valve.
 2b. Inside of same.
 Carboniferous, Upper Coal Measures.
LAMELLIBRANCHS
PLATE XLV.
EXPLANATION OF PLATE XLV.

Fig. 1. *Myalina recurvirostris* ...
 1a. Interior of valve.
 1b. Exterior of same.
 Carboniferous, Upper Coal Measures.

Fig. 2. *Pinnula peracuta* ... 116
 2a. Side view.
 2b. Dorsal aspect
 Carboniferous, Upper Coal Measures.

Fig. 3. *Nucula ventricosa* ... 121
 3a. Inside view (enlarged).
 3b. Right valve.
 Carboniferous, Coal Measures.

Fig. 4. *Nuculana bellistriata* .. 122
 4a. Left valve.
 4b. Dorsal aspect.
 Carboniferous, Coal Measures.
LAMELLIBRANCHS.
PLATE XLVI.
EXPLANATION OF PLATE XLVI.

FIG. 1. *Macrodon obsoletus*. Right valve. (Keyes collection.) Carboniferous, Upper Coal Measures. Page. 120

FIG. 2. *Macrodon sangamonensis*. Right valve enlarged. (Hare collection.) Carboniferous, Upper Coal Measures. 121

FIG. 4. *Schizodus harii*. Left valve. (Hare collection.) Carboniferous, Upper Coal Measures. 123

FIG. 5. *Astartella concentrica?*. Left valve. (Hare collection.) Carboniferous, Upper Coal Measures. 126

FIG. 7. *Astartella vera*. Right side. (Broadhead collection.) Carboniferous, Coal Measures. 125

FIG. 8. *Pleurophorus oblongus*. Right valve. (Hare collection.) Carboniferous, Upper Coal Measures. 125

FIG. 9. *Schizodus sp1*. Left valve. (Hare collection) Carboniferous, Coal Measures. 125

FIG. 10. *Monopteria sp1*. Left valve. (Hare collection) Carboniferous, Upper Coal Measures. 125

FIG. 12. *Altorisma costata*. Right valve. (Hare collection) Carboniferous, Upper Coal Measures. 128
PLATE XLVII.
EXPLANATION OF PLATE XLVII.

<table>
<thead>
<tr>
<th>FIG. 1.</th>
<th>Edmondia aspinwallensis ... 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.</td>
<td>Right valve.</td>
</tr>
<tr>
<td>1b.</td>
<td>Dorsal aspect. Carboniferous, Upper Coal Measures.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 2.</th>
<th>Edmondia nuptialis .. 126</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Side view. (Rowley collection.) Carboniferous, Burlington limestone.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 3.</th>
<th>Edmondia burlingtonensis .. 126</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left valve. (Rowley collection.) Carboniferous, Burlington limestone.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 4.</th>
<th>Allorisma sp ? Cast of left valve (Rowley collection.) Carboniferous, Chouteau limestone.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FIG. 5.</th>
<th>Allorisma subcuneatum .. 129</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a.</td>
<td>Dorsal view.</td>
</tr>
<tr>
<td>5b.</td>
<td>Aspect of left side.</td>
</tr>
<tr>
<td>5c.</td>
<td>Right side. Carboniferous, Upper Coal Measures.</td>
</tr>
</tbody>
</table>
LAMELLIBRANCHS
PLATE XLVIII.
EXPLANATION OF PLATE XLVIII.

Fig. 1. *Pleurotomaria broadheadii* ... 144
 1a. Type specimen. (Broadhead collection.)
 1b. Another view of same.
 Carboniferous, Upper Coal Measures.

Fig. 2. *Pleurotomaria brazoensis* ... 142
 2a. View of a well-preserved specimen, x 2. (Keyes collection.)
 2b. Another view of same.
 Carboniferous, Lower Coal Measures.

Fig. 3. *Pleurotomaria missouriensis* ... 136
 3a. Side view. (Hare collection)
 3b. Sutural region (enlarged).
 Carboniferous, Upper Coal Measures.

Fig. 4. *Pleurotomaria sp.*?
 4a. Side aspect. (Rowley collection.)
 Carboniferous, Burlington limestone.

Fig. 5. *Pleurotomaria perhumerosa* .. 140
 Side view of a typical specimen.
 Carboniferous, Upper Coal Measures.

Fig. 6. *Pleurotomaria turbiniformis* ... 135
 6a. Side view. (Hare collection.)
 6b. Ornamentation (enlarged).
 Carboniferous, Upper Coal Measures.
GASTEROPODS.
PLATE XLIX.
EXPLANATION OF PLATE XLIX.

Fig. 1. *Pleurotomaria missouriensis*………………………………………………………………………………….. 136
Another view of specimen shown on preceding plate.

Fig. 2. *Pleurotomaria subcarbonaria*…………………………………………………………………………………… 135
2a. Type specimen. (Rowley collection.)
Carboniferous, Burlington limestone.

Fig. 3. *Murchisonia melaniformis?*…………………………………………………………………………………… 145
Side view. (Mus. Mo. Geol. Sur.)
Cambrian?

Fig. 4. *Murchisonia terebra*…………………………………………………………………………………………… 146
A somewhat worn specimen. (Hare collection.)
Carboniferous, Upper Coal Measures.

Fig. 5. *Murchisonia major*……………………………………………………………………………………………… 145
5a. Specimen with shell. (Mus. Mo. Geol. Sur.)
5b. Internal cast. (Same collection.)
Silurian, Trenton limestone.
GASTEROPODS.
PLATE L.
EXPLANATION OF PLATE L.

<table>
<thead>
<tr>
<th>FIG. 1.</th>
<th>Bellerophon crassus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>View of aperture.</td>
<td>151</td>
</tr>
<tr>
<td>1b</td>
<td>Side aspect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Upper Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 2.</th>
<th>Bellerophon percarinatus</th>
<th>153</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>Dorsal aspect.</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>Apertural view.</td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>Same of another individual.</td>
<td></td>
</tr>
<tr>
<td>2d</td>
<td>Dorsal aspect.</td>
<td></td>
</tr>
<tr>
<td>2e</td>
<td>Side view.</td>
<td></td>
</tr>
<tr>
<td>2f</td>
<td>Same of another example.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 3.</th>
<th>Bellerophon bilabiatus</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dorsal aspect. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 4.</th>
<th>Bellerophon nodocarinatus</th>
<th>152</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>Side view.</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>View of aperture.</td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>Dorsal aspect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 5.</th>
<th>Bellerophon urii</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>Dorsal aspect.</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>Side view.</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>View of aperture.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 6.</th>
<th>Bellerophon pannus</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dorsal aspect. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG 7.</th>
<th>Bellerophon bellus</th>
<th>148</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dorsal aspect of type. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Upper Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>
PLATE LI.
EXPLANATION OF PLATE LI.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Specimen</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bellerophon sp.?</td>
<td>Apertural aspect. (Hare collection.) Carboniferous, Upper Coal Measures.</td>
<td>147</td>
</tr>
<tr>
<td>2</td>
<td>Bellerophon bilobatus</td>
<td>Dorsal aspect. (Rowley collection.) Silurian, Trenton limestone.</td>
<td>148</td>
</tr>
<tr>
<td>3</td>
<td>Bellerophon marconanus</td>
<td>Dorsal aspect. (Hare collection.) Carboniferous, Upper Coal Measures.</td>
<td>154</td>
</tr>
<tr>
<td>4</td>
<td>Porcellia nodosa</td>
<td>Side view. (Rowley collection.) Carboniferous, Burlington limestone.</td>
<td>157</td>
</tr>
<tr>
<td>5</td>
<td>Straparollus obtusus</td>
<td>View from above. (Keyes collection.) Carboniferous, Kinderhook beds.</td>
<td>158</td>
</tr>
<tr>
<td>6</td>
<td>Straparollus ammon</td>
<td>View from above. (Rowley collection.) Carboniferous, Burlington limestone.</td>
<td>162</td>
</tr>
<tr>
<td>7</td>
<td>Omphalotrochus springvallensis</td>
<td>View of type. (U. S. Nat. Mus.) Carboniferous, Kinderhook limestone.</td>
<td>157</td>
</tr>
<tr>
<td>8</td>
<td>Straparollus valvatiformis</td>
<td>View from below. (Mus. Mo. Geol. Sur.) Cambrian.</td>
<td>158</td>
</tr>
<tr>
<td>9</td>
<td>Straparollus latus</td>
<td>View from above. (Keyes collection.) Carboniferous, Burlington limestone.</td>
<td>162</td>
</tr>
</tbody>
</table>
GASTEROPODS
PLATE LII.
EXPLANATION OF PLATE LII.

Fig. 1. *Igoeas capulus* ... 183
1a. View from above. (Rowley collection.)
1b. Outline from side.
Carboniferous, Burlington limestone.

Fig. 2. *Igoceas fusurilla* ... 186
Side view. (Keyes collection)
Carboniferous, Keokuk limestone.

Fig. 3. *Igoceas pabulocrinus* ... 184
Specimen attached to *Platycrius hemisphericus*. (Keyes collection)
Carboniferous, Keokuk limestone.

Fig. 4. *Pleurotomaria sp.?*
Side view. (Rowley collection)
Carboniferous, Burlington limestone.

Fig. 5. *Pleurotomaria sp.?*
Side view
Carboniferous, Burlington limestone.

Fig. 6. *Strophostylus peariensis* ... 197
Apertural view. (Keyes collection)
Carboniferous, Coal Measures.

Fig. 7. *Phanerotinus paradoxus* .. 164
Lateral view.
Carboniferous, Burlington limestone.

Fig. 8. *Maculina magna* (young) ? .. 163
8a. View from above. (Mus. Mo. Geol. Sur.)
8b. Apertural aspect of same.
Silurian, Trenton limestone.

Fig. 10. *Capulus equilateralis* .. 178
10a. Lateral aspect. (Keyes collection)
10b. Apertural aspect of a specimen which was probably attached to a *Platycrius*.
Carboniferous, Keokuk limestone.
GASTEROPODS.
PLATE LIII.
EXPLANATION OF PLATE LIII.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Capulus paralius</td>
<td>174</td>
</tr>
<tr>
<td>1a.</td>
<td>Lateral view of type. (Mus. Michigan Univ.)</td>
<td></td>
</tr>
<tr>
<td>1b.</td>
<td>Lateral view of young specimen (Keyes collection)</td>
<td></td>
</tr>
<tr>
<td>1c.</td>
<td>Lateral view of another immature specimen. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td>1d.</td>
<td>Lateral view of a natural cast. (Collection of J. S. Newberry.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Kinderhook limestone.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Orthonychia formosum</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Lateral view of type, attached to the vault of Dorycrinus immaturus Wachs. & Spr. (Collection of Wachsmuth & Springer.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Kinderhook limestone.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Orthonychia cornuformis</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Igoceras subplicatum</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Capulus lodensis</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Capulus piso</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Capulus occidentis</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Capulus haliotoides</td>
<td>174</td>
</tr>
<tr>
<td>9a.</td>
<td>Lateral view. (Collection of J. S. Newberry.)</td>
<td></td>
</tr>
<tr>
<td>9b.</td>
<td>Apertural aspect of same.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Igoceras quincyense</td>
<td>182</td>
</tr>
<tr>
<td>10a.</td>
<td>Lateral view, apical portion broken. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td>10b.</td>
<td>Lateral view of an exfoliated specimen. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td>10c.</td>
<td>Apical aspect of same.</td>
<td></td>
</tr>
<tr>
<td>10d.</td>
<td>A specimen attached to the vault of Physetocrinus ventricosus Hall, lower portion of the crinoidal calyx not shown. (Collection Wachsmuth & Springer.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Capulus tribulosus</td>
<td>175</td>
</tr>
<tr>
<td>11a.</td>
<td>Lateral view. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td>11b.</td>
<td>Dorsal aspect of same.</td>
<td></td>
</tr>
<tr>
<td>11c.</td>
<td>Lateral view of type. (Collection of E. O. Ulrich.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Capulus biserialis</td>
<td>177</td>
</tr>
<tr>
<td>12a.</td>
<td>Lateral view of type. (After Meek & Worthen.)</td>
<td></td>
</tr>
<tr>
<td>12b.</td>
<td>Dorsal aspect of same.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Capulus latus</td>
<td>176</td>
</tr>
<tr>
<td>13a.</td>
<td>Dorsal view of type. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td>13b.</td>
<td>Lateral aspect of same.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Capulus obliquus</td>
<td>177</td>
</tr>
<tr>
<td>14a.</td>
<td>Dorsal view of type. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td>14b.</td>
<td>Lateral aspect of same.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Orthonychia cyrtolites</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Lateral aspect. (Keyes collection.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Burlington limestone.</td>
<td></td>
</tr>
</tbody>
</table>
GASTEROPODS
EXPLANATION OF PLATE LIV.

FIG. 1. Orthonychia chesterense .. 191
1a. Lateral view. (Keyes collection.)
1b. Lateral view of another specimen.
1c. Lateral aspect of specimen attached to Pterotocrinus acutus, with only a portion of the dome shown and the radial dome plates broken away.
1d. View from above of another specimen resting on the same species of crinoid. (2b-d in collection Wachsmuth and Springer.) Carboniferous, Kaskaskia limestone.

FIG. 2. Orthonychia acutirostris .. 190
2a. Lateral view
2b. Dorsal view of another specimen. (After Whitfield.)
2c. Lateral aspect of same.
Carboniferous, Keokuk limestone.

FIG. 3. Igoceras pabulocrinus ... 184
3a-b. Specimen attached to Platycrinus hemisphericus Meek & Worthen. (Keyes collection.)
3c-k. Other specimens which were also attached to the same species of crinoid.
3l. Lateral view of same.
3m. Posterior view of a natural cast showing muscular scars. (After Meek & Worthen)
Carboniferous, Keokuk limestone.

FIG. 4. Capulus spinigerus ... 180
4a. Lateral view. (After Worthen.)
4b. Another aspect of same.

FIG. 5. Capulus rarius .. 180
5a. Dorsal view of specimen supposed to be the type.
(Museum State University of Missouri.)
5b. Lateral aspect of same.
5c. Posterior aspect of same.
5d. Posterior view of another specimen. (After White.)

FIG. 6. Naticopsis tortum (Meek).
6a-b. Apertural and dorsal views of type. (Collection of J. S. Newberry)

FIG. 7. Portion of the vault of Stratorcrinus regalis Hall, showing the impression made by a growing shell of Capulus.

FIG. 8. Calyx of Platycrinus pileiformis Hall, showing the impression made by a Capulus on the anal side of the crinoid.
EXPLANATION OF PLATE LV.

Fig. 1. *Loxonema sp.?*
Lateral aspect. (Rowley collection.)
Carboniferous, Burlington limestone.

Fig. 2. *Loxonema sp.?*
Lateral view. (Rowley collection.)
Carboniferous, Burlington limestone.

Fig. 3. *Gen. et sp. nov.*
3a. View of specimen. (Hare collection.)
3b. Opposite aspect of same, showing columella.
Carboniferous, Upper Coal Measures.

Fig. 4. *Soleniscus sp.?*
4a. Specimen with part of body-whorl removed. (Hare collection.)
4b. Another specimen. (Same collection.)
Carboniferous, Upper Coal Measures.

Fig. 6. *Bulimorpha inornata* ... 205
Lateral view. (Hare collection.)
Carboniferous, Upper Coal Measures.

Fig. 7. *Strophostylus remex* .. 197
7a. Apertural view. (Keyes collection.)
7b. Opposite aspect of same.
Carboniferous, Upper Coal Measures.

Fig. 8. *Trachydoma wheeleri* .. 200
Lateral view. (Keyes collection.)
Carboniferous, Upper Coal Measures.
PLATE LVI.
EXPLANATION OF PLATE LVI.

<table>
<thead>
<tr>
<th>FIG. 1</th>
<th>Goniatites sp.?</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lateral view. (Hare collection.)</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Upper Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 2</th>
<th>Nautilus winslowi</th>
<th>223</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dorsal aspect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 3</th>
<th>Nautilus missouriensis</th>
<th>224</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dorsal aspect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 4</th>
<th>Nautilus forbesianus</th>
<th>223</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a.</td>
<td>Side view.</td>
<td></td>
</tr>
<tr>
<td>4b.</td>
<td>Lateral aspect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 5</th>
<th>Nautilus ferratus.</th>
<th>226</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a.</td>
<td>Dorsal aspect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Hare collection.)</td>
<td></td>
</tr>
<tr>
<td>5b.</td>
<td>Side of same.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboniferous, Upper Coal Measures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIG. 6</th>
<th>Orthoceras rushensis</th>
<th>226</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a.</td>
<td>Small and somewhat imperfect specimen.</td>
<td></td>
</tr>
</tbody>
</table>